【題目】如圖,四邊形ABCD是平行四邊形,E、F是對(duì)角線(xiàn)AC上的兩點(diǎn),∠1=∠2.
(1)求證:AE=CF;
(2)求證:四邊形EBFD是平行四邊形.
【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.
【解析】(1)通過(guò)證明△ADE≌△CBF,由全等三角的對(duì)應(yīng)邊相等證得AE=CF。
(2)根據(jù)平行四邊形的判定定理:對(duì)邊平行且相等的四邊形是平行四邊形證得結(jié)論。
證明:(1)如圖:∵四邊形ABCD是平行四邊形,
∴AD=BC,AD∥BC,∠3=∠4。
∵∠1=∠3+∠5,∠2=∠4+∠6,
∴∠1=∠2。
∴∠5=∠6。
∵在△ADE與△CBF中,∠3=∠4,AD=BC,∠5=∠6,
∴△ADE≌△CBF(ASA)。
∴AE=CF。
(2)∵∠1=∠2,∴DE∥BF。
又∵由(1)知△ADE≌△CBF,
∴DE=BF。
∴四邊形EBFD是平行四邊形.
“點(diǎn)睛”本題考查了平行四邊形的判定和性質(zhì),全等三角形的判定和性質(zhì),靈活運(yùn)用平行四邊形的判定定理是解題關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:如圖(1),若分別以△ABC的三邊AC、BC、AB為邊向三角形外側(cè)作正方形ACDE、BCFG和ABMN,則稱(chēng)這三個(gè)正方形為△ABC的外展三葉正方形,其中任意兩個(gè)正方形為△ABC的外展
雙葉正方形.
(1)作△ABC的外展雙葉正方形ACDE和BCFG,記△ABC,△DCF的面積分別為S1和S2.
①如圖(2),當(dāng)∠ACB=90°時(shí),求證:S1=S2;
②如圖(3),當(dāng)∠ACB≠90°時(shí),S1與S2是否仍然相等,請(qǐng)說(shuō)明理由.
(2)已知△ABC中,AC=3,BC=4,作其外展三葉正方形,記△DCF、△AEN、△BGM的面積和為S,請(qǐng)利用圖(1)探究:當(dāng)∠ACB的度數(shù)發(fā)生變化時(shí),S的值是否發(fā)生變化?若不變,求出S的值;若變化,求出S的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,□ ABCD中,E是BA延長(zhǎng)線(xiàn)上一點(diǎn),AB=AE,連結(jié)CE交AD于點(diǎn)F,若CF平分∠BCD,AB=3,則BC的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】不改變分式的值,將分式的分子、分母的各項(xiàng)系數(shù)都化為整數(shù),則= ___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某樓盤(pán)2013年房?jī)r(jià)為每平方米8100元,經(jīng)過(guò)兩年連續(xù)降價(jià)后,2015年房?jī)r(jià)為7600元.設(shè)該樓盤(pán)這兩年房?jī)r(jià)平均降低率為x,根據(jù)題意可列方程為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在0,2,(﹣3)0,﹣5這四個(gè)數(shù)中,最大的數(shù)是( 。
A. 0 B. 2 C. (﹣3)0 D. ﹣5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】乘法公式的探究和應(yīng)用
(1)如圖1,可以求出陰影部分的面積是__.(寫(xiě)成兩數(shù)平方差的形式)
(2)如圖,若將陰影部分剪下來(lái),重新拼成一個(gè)長(zhǎng)方形,它的寬是__,長(zhǎng)是__,面積是__.(寫(xiě)成多項(xiàng)式乘積的形式)
(3)比較左、右兩圖陰影部分的面積,可以得到乘法公式__.(用式子來(lái)表示)
(4)運(yùn)用你所得到的公式,計(jì)算下列各題.
①②(2x﹣y+3)(2x﹣3+y)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°
(1)先作∠ACB的平分線(xiàn)交AB邊于點(diǎn)P,再以點(diǎn)P為圓心,PA長(zhǎng)為半徑作⊙P;(要求:尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法)
(2)請(qǐng)你判斷(1)中BC與⊙P的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了響應(yīng)“足球進(jìn)校園”的目標(biāo),某校計(jì)劃為學(xué)校足球隊(duì)購(gòu)買(mǎi)一批足球,已知購(gòu)買(mǎi)2個(gè)A品牌的足球和3個(gè)B品牌的足球共需380元;購(gòu)買(mǎi)4個(gè)A品牌的足球和2個(gè)B品牌的足球共需360元.
(1)求A,B兩種品牌的足球的單價(jià).
(2)求該校購(gòu)買(mǎi)20個(gè)A品牌的足球和2個(gè)B品牌的足球的總費(fèi)用.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com