【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對(duì)稱軸是直線x=1,則下列四個(gè)結(jié)論錯(cuò)誤的是(
A.c>0
B.2a+b=0
C.b2﹣4ac>0
D.a﹣b+c>0

【答案】D
【解析】解:A、因?yàn)槎魏瘮?shù)的圖象與y軸的交點(diǎn)在y軸的上方,所以c>0,正確; B、由已知拋物線對(duì)稱軸是直線x=﹣ =1,得2a+b=0,正確;
C、由圖知二次函數(shù)圖象與x軸有兩個(gè)交點(diǎn),故有b2﹣4ac>0,正確;
D、直線x=﹣1與拋物線交于x軸的下方,即當(dāng)x=﹣1時(shí),y<0,即y=ax2+bx+c=a﹣b+c<0,錯(cuò)誤.
故選:D.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系的相關(guān)知識(shí),掌握二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開(kāi)口方向:a>0時(shí),拋物線開(kāi)口向上; a<0時(shí),拋物線開(kāi)口向下b與對(duì)稱軸有關(guān):對(duì)稱軸為x=-b/2a;c表示拋物線與y軸的交點(diǎn)坐標(biāo):(0,c).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,將正方形紙片ABCD對(duì)折,使AB與CD重合,折痕為EF.如圖2,展開(kāi)后再折疊一次,使點(diǎn)C與點(diǎn)E重合,折痕為GH,點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)M,EM交AB于N,則tan∠ANE=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,OA=OB,點(diǎn)PABO的角平分線的交點(diǎn),若PNPAx軸于N,延長(zhǎng)OPABM,寫出AO,ON,PM之間的數(shù)量關(guān)系,并證明之

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】A,B兩地相距20km.甲、乙兩人都由A地去B地,甲騎自行車,平均速度為10km/h;乙乘汽車,平均速度為40km/h,且比甲晚1.5h出發(fā).設(shè)甲的騎行時(shí)間為x(h)(0≤x≤2)

(1)根據(jù)題意,填寫下表:

時(shí)間x(h)

A地的距離

0.5

1.8

_____

甲與A地的距離(km)

5

  

20

乙與A地的距離(km)

0

12

  

(2)設(shè)甲,乙兩人與A地的距離為y1(km)和y2(km),寫出y1,y2關(guān)于x的函數(shù)解析式;

(3)設(shè)甲,乙兩人之間的距離為y,當(dāng)y=12時(shí),求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】李明從市場(chǎng)上買回一塊矩形鐵皮,他將此矩形鐵皮的四個(gè)角各剪去一個(gè)邊長(zhǎng)為1米的正方形后,剩下的部分剛好能圍成一個(gè)容積為15立方米的無(wú)蓋長(zhǎng)方體運(yùn)輸箱,且此長(zhǎng)方體運(yùn)輸箱底面的長(zhǎng)比寬多2米,現(xiàn)已知購(gòu)買這種鐵皮每平方米需20元,問(wèn)購(gòu)買這張矩形鐵皮共花了多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程kx2﹣4x+2=0有實(shí)數(shù)根.
(1)求k的取值范圍;
(2)若△ABC中,AB=AC=2,AB,BC的長(zhǎng)是方程kx2﹣4x+2=0的兩根,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:已知在△ABC中,AB=AC,DBC邊的中點(diǎn),過(guò)點(diǎn)DDEAB,DFAC,垂足分別為E,F(xiàn).

(1)求證:DE=DF;

(2)若∠A=60°,BE=1,求△ABC的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,拋物線y=ax2+bx(a<0)的圖象與x軸交于A、O兩點(diǎn),頂點(diǎn)為B,將該拋物線的圖象繞原點(diǎn)O旋轉(zhuǎn)180°后,與x軸交于點(diǎn)C,頂點(diǎn)為D,若此時(shí)四邊形ABCD恰好為矩形,則b的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC的兩條角平分線BD、CE交于O,且A=60°,則下列結(jié)論中不正確的是( )

A.BOC=120° B.BC=BE+CD C.OD=OE D.OB=OC

查看答案和解析>>

同步練習(xí)冊(cè)答案