【題目】如圖,AD是等邊三角形ABC的高,點E是AD上的一個動點(點E不與點A重合),連接CE,將線段CE繞點E順時針旋轉(zhuǎn)60°得到EF,連接BF、CF.
(1)猜想:△CEF是 三角形;
(2)求證:AE=BF;
(3)若AB=4,連接DF,在點E運動的過程中,請直接寫出DF的最小值 .
【答案】(1)等邊;(2)見解析;(3)1
【解析】
(1)根據(jù)旋轉(zhuǎn)的性質(zhì)和有一個角是60°的等腰三角形是等邊三角形證明即可.
(2)根據(jù)等邊三角形的性質(zhì)證明△ACE≌△BCF即可解決問題.
(3)根據(jù)等邊三角形的性質(zhì)和全等的性質(zhì)可證明∠CBF=∠CAE=30°,推出點F的運動軌跡是射線BF(與BC的夾角為30°),再根據(jù)垂線段最短解決問題即可.
(1)解:結(jié)論:△CEF是等邊三角形.
理由:由旋轉(zhuǎn)可知,CE=EF,
∵CE=EF,∠CEF=60°,
∴△CEF是等邊三角形,
故答案為:等邊.
(2)證明:∵△ABC,△CEF都是等邊三角形,
∴CA=CB,CE=CF,∠ACB=∠ECF=60°,
∴∠ACE=∠BCF,
∴△ACE≌△BCF(SAS),
∴AE=BF.
(3)解:∵△ABC是等邊三角形,
∴∠BAC=60°,AB=BC=4,
∵AD⊥BC,
∴∠CAD=∠BAD=30°,BD=CD=2,
∵△ACE≌△BCF,
∴∠CAE=∠CBF=30°,
∴點F的運動軌跡是射線BF(與BC的夾角為30°),
∴當DF⊥BF時,DF的值最小,最小值=BD=,
故答案為:1.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀,后解答:
(1)由根式的性質(zhì)計算下列式子得:
①=3,②,③,④=5,⑤=0.
由上述計算,請寫出的結(jié)果(a為任意實數(shù)).
(2)利用(1)中的結(jié)論,計算下列問題的結(jié)果:
①;
②化簡:(x<2).
(3)應(yīng)用:
若=3,求x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店出售一種商品,其原價為元,現(xiàn)有兩種調(diào)價方案:一種是先提價,在此基礎(chǔ)上又降價;另一種是先降價, 在此基礎(chǔ)上又提價.
1)用這兩種方案調(diào)價的結(jié)果是否一樣?
2)兩種調(diào)價方案改為:一種是提價;另一種是先提價,在此基礎(chǔ)上又提價,這兩種調(diào)價方案結(jié)果是否一樣?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們已經(jīng)知道(a﹣b)2≥0,即a2﹣2ab+b2≥0.所以a2+b2≥2ab(當且僅當a=b時取等號).
閱讀1:若a、b為實數(shù),且a>0,b>0.
∵()2≥0,∴a﹣2+b≥0,∴a+b≥2(當且僅當a=b時取等號).
閱讀2:若函數(shù)y=x(m>0,x>0,m為常數(shù)).由閱讀1結(jié)論可知:x即x∴當x即x2=m,∴x=(m>0)時,函數(shù)y=x的最小值為2.
閱讀理解上述內(nèi)容,解答下列問題:
問題1:當x>0時,的最小值為 ;當x<0時,的最大值為 .
問題2:函數(shù)y=a+(a>1)的最小值為 .
問題3:求代數(shù)式(m>﹣2)的最小值,并求出此時的m的值.
問題4:如圖,四邊形ABCD的對角線AC,BD相交于點O,△AOB、△COD的面積分別為4和16,求四邊形ABCD面積的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在平面直角坐標系中的位置如圖所示.
(1)作出△ABC關(guān)于軸對稱的△A1B1C1,并寫出△A1B1C1各頂點的坐標;
(2)將△ABC向右平移6個單位,作出平移后的△A2B2C2,并寫出△A2B2C2各頂點的坐標;
(3)觀察△A1B1C和△A2B2C2,它們是否關(guān)于某直線對稱?若是,請用實線條畫出對稱軸。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將二次函數(shù)y=x2-m(其中m>0)的圖象在x軸下方的部分沿x軸翻折,圖象的其余部分保持不變,形成新的圖象記為y1,另有一次函數(shù)y=x+b的圖象記為y2,則以下說法:
①當m=1,且y1與y2恰好有三個交點時b有唯一值為1;
②當b=2,且y1與y2恰有兩個交點時,m>4或0<m<;
③當m=-b時,y1與y2一定有交點;
④當m=b時,y1與y2至少有2個交點,且其中一個為(0,m).
其中正確說法的序號為 ______ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C是⊙O上一點,過點C的直線交AB的延長線于點D,AE⊥DC,垂足為E,F(xiàn)是AE與⊙O的交點,AC平分∠BAE.
(1)求證:DE是⊙O的切線;
(2)若AE=6,∠D=30°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場將進貨價為30元的臺燈以40元的價格售出,平均每月能售出600個,這種臺燈的售價每上漲1元,其銷量就減少10個,
(1)為了實現(xiàn)銷售這種臺燈平均每月10000元的銷售利潤,售價應(yīng)定為多少元?
(2)當售價定為多少元時,其銷售利潤達到最大,最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com