【題目】如圖,已知△ABC.按如下步驟作圖:①以A為圓心,AB長(zhǎng)為半徑畫弧;②以C為圓心,CB長(zhǎng)為半徑畫弧,兩弧相交于點(diǎn)D;③連結(jié)BD,與AC交于點(diǎn)E,連結(jié)AD,CD

1)求證:△ABC≌△ADC;

2)若∠BAC30°,∠BCA45°,BC2

①求∠BAD所對(duì)的弧BD的長(zhǎng);②直接寫出AC的長(zhǎng).

【答案】1)見解析;(2)① ;② .

【解析】

1)由SSS可證ABC≌△ADC
2)①由題意可得AC垂直平分BD,可得BE=DE,ACBD,由直角三角形的性質(zhì)可得BE=CE=AB=2BE=2,AE=BE=,由等腰三角形的性質(zhì)可得∠BAD=2BAC=60°,由弧長(zhǎng)公式可求弧BD的長(zhǎng);
②由AC=AE+CE可求解.

證明:(1)由題意可得ABAD,BCCD

ACAC

∴△ABC≌△ADCSSS);

2①∵ABAD,BCCD

AC垂直平分BD

BEDE,ACBD

∵∠BCA45°,BC2

BECE,且BAC30°,ACBD

AB2BE2AEBE

ABAD,ACBD

∴∠BAD2∠BAC60°

②∵ACAE+CE

AC

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=-x2-mx+2m2m0)與x軸交于A,B兩點(diǎn),且點(diǎn)A在點(diǎn)B的左側(cè).

1)求證:OB=2OA;

2)若直線y=-x+2與拋物線只有一個(gè)公共點(diǎn),求m的值.

3)若點(diǎn)C與點(diǎn)O關(guān)于點(diǎn)A對(duì)稱,且以點(diǎn)C為圓心,CO為半徑的圓交拋物線于點(diǎn)D,求證:DO平分ADB

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于的方程有兩個(gè)實(shí)數(shù)根、

1求實(shí)數(shù)k的取值范圍;

2、滿足,求實(shí)數(shù)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線軸、軸分別交于、兩點(diǎn),拋物線經(jīng)過(guò)、兩點(diǎn),與軸的另一個(gè)交點(diǎn)為,且.

1)求拋物線的解析式;

2)點(diǎn)上,點(diǎn)的延長(zhǎng)線上,且,連接于點(diǎn),點(diǎn)為第一象限內(nèi)的一點(diǎn),當(dāng)是以為斜邊的等腰直角三角形時(shí),連接,設(shè)的長(zhǎng)度為,的面積為,請(qǐng)用含的式子表示,并寫出自變量的取值范圍;

3)在(2)的條件下,連接,將沿翻折到的位置(對(duì)應(yīng)),若,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖數(shù)軸的A、BC三點(diǎn)所表示的數(shù)分別為a、bc.若|a﹣b|=3,|b﹣c|=5,且原點(diǎn)OAB的距離分別為4、1,則關(guān)于O的位置,下列敘述何者正確?( 。

A. A的左邊 B. 介于A、B之間 C. 介于B、C之間 D. C的右邊

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,取格點(diǎn)A、BC并連接AB,BC.取格點(diǎn)DE并連接,交AB于點(diǎn)F

(Ⅰ)AB的長(zhǎng)等于_____;

(Ⅱ)若點(diǎn)G在線段BC上,且滿足AF+CGFG,請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中,用無(wú)刻度的直尺,確定點(diǎn)G的位置,并簡(jiǎn)要說(shuō)明點(diǎn)G的位置是如何找到的.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A-2,m),B2,m),C3,mn)(n0)在同一個(gè)函數(shù)的圖象上,這個(gè)函數(shù)可能是( 。

A.yxB.y=﹣C.yx2D.y=﹣x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)yax2+bx+c的圖象如圖所示,經(jīng)過(guò)(﹣10)、(3,0)、(0,﹣3).

1)求二次函數(shù)的解析式;

2)不等式ax2+bx+c0的解集為   ;

3)方程ax2+bx+cm有兩個(gè)實(shí)數(shù)根,m的取值范圍為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面內(nèi),給定不在同一條直線上的點(diǎn)(如圖所示),點(diǎn)到點(diǎn)的距離均等于(為常數(shù)),到點(diǎn)的距離等于的所有點(diǎn)組成圖形,的平分線交圖形于點(diǎn),連接

1)求證:;

2)過(guò)點(diǎn),垂足為,作,垂足為,延長(zhǎng)交圖形于點(diǎn),連接.若,求直線與圖形的公共點(diǎn)個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案