在梯形ABCD中,AD∥BC,中位線(xiàn)EF與對(duì)角線(xiàn)BD交于點(diǎn)G,若
EG
FG
=
2
3
,AD=4,則BC的長(zhǎng)是( 。
分析:根據(jù)梯形中位線(xiàn)性質(zhì)得出EF∥AD∥BC,推出DG=BG,得出EG=
1
2
AD=
1
2
×4=2,F(xiàn)G=
1
2
BC,求出EG,即可求出FG,求出BC即可.
解答:解:∵EF是梯形ABCD的中位線(xiàn),
∴EF∥AD∥BC,
∴DG=BG,
∴EG=
1
2
AD=
1
2
×4=2,F(xiàn)G=
1
2
BC,
EG
FG
=
2
3

∴FG=3,
∴BC=2FG=6,
故選B.
點(diǎn)評(píng):本題考查了梯形的中位線(xiàn),三角形的中位線(xiàn)的應(yīng)用,主要考查學(xué)生的推理能力和計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

10、如圖,在梯形ABCD中,若AB∥CD,BD=AD,∠BCD=110°,∠CBD=30°,則∠ADC=
140°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在梯形ABCD中,AB∥CD,E是AB邊上的點(diǎn),給出下面三個(gè)論斷:①AD=BC;②DE=CE;③AE=BE.請(qǐng)你以其中的兩個(gè)論斷為條件,填入“已知”欄中,以一個(gè)論斷作為結(jié)論,填入“求證”欄中,使之成為一個(gè)正確的命題,并證明之.
已知:如圖,在梯形ABCD中,AB∥CD,E是AB邊上的點(diǎn),
AD=BC,AE=BE
AD=BC,AE=BE

求證:
DE=CE
DE=CE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在梯形ABCD中,AD∥BC,AD=AB,過(guò)點(diǎn)A作AE∥DB交CB的延長(zhǎng)線(xiàn)于點(diǎn)E.
(1)試說(shuō)明∠ABD=∠CBD.
(2)若∠C=2∠E,試說(shuō)明AB=DC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在梯形ABCD中,AD∥BC,AB=AD,BD=BC,∠A=100°,則∠BDC的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在梯形ABCD中,AD∥BC,AB=
8
cm,AD=3cm,DC=
5
cm,∠B=45°,點(diǎn)P是下底BC邊上的一個(gè)動(dòng)點(diǎn),從B向C以2cm/s的速度運(yùn)動(dòng),到達(dá)點(diǎn)C時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t(s).
(1)求BC的長(zhǎng);
(2)當(dāng)t為何值時(shí),四邊形APCD是等腰梯形;
(3)當(dāng)t為何值時(shí),以A、B、P為頂點(diǎn)的三角形是等腰三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案