25、如圖,AD為△ABC的高,E為AC上一點,BE交AD于F,且有BF=AC,F(xiàn)D=CD,那么BE⊥AC嗎?為什么?
分析:由于∠BFD、∠FBD互余,若證BE⊥AC,就必須證得∠BFD=∠C,觀察圖形后可得:結合已知條件證Rt△BDF≌Rt△ADC即可.
解答:解:BE⊥AC.
理由∵BF=AC,DF=DC,∠ADB=∠ADC=90°,
∴Rt△BDF≌Rt△ADC,
∴∠CAD=∠DBF,
∴∠CAD+∠AFE=∠DBF+∠BFD=90°,
∴BE⊥AC.
點評:此題主要考查的是全等三角形的判定和性質,難度不大,找準全等的三角形是正確解決本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,AD為△ABC的中線,∠ADC=45°,把△ADC沿AD對折,點C落在點C′的位置,BC=4,求BC′的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,AD為△ABC的中線,BE為△ABD的中線.
(1)在△BED中作BD邊上的高,垂足為F;
(2)若△ABC的面積為20,BD=5.
①△ABD的面積為
 

②求△BDE中BD邊上的高EF的長;
(3)過點E作EG∥BC,交AC于點G,連接EC、DG且相交于點O,若S△ABC=2m,又S△COD=n,求S△GOC.(用含m、n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AD為△ABC的中線,BE為三角形ABD中線,
(1)∠ABE=15°,∠BAD=35°,求∠BED的度數(shù);
(2)在△BED中作BD邊上的高;
(3)若△ABC的面積為60,BD=5,則點E到BC邊的距離為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AD為△ABC的中線,BE為△ABD的中線.
(1)∠ABE=15°,∠BAD=26°,求∠BED的度數(shù);
(2)若△ABC的面積為40,BD=5,則△BDE中BD邊上的高為多少.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AD為△ABC的中線,BE為△ABD的中線.
(1)∠ABE=15°,∠BAD=40°,求∠BED的度數(shù);
(2)作圖:在△BED中作BD邊上的高,垂足為F;
(3)若△ABC的面積為60,BD=6,則△BDE中BD邊上的高為多少?(請寫出解題的必要過程)
(4)過點E作EG∥BC,交AC于點G,連接EC、DG且相交于點O,若S△ABC=m,S△COD=n,求S△EOD(用含m、n的代數(shù)式表示)

查看答案和解析>>

同步練習冊答案