【題目】四邊形ABCD中,AB∥ DC , BC=b,AB=AC=AD=a,如圖24-1-4-11,求BD的長.
圖24-1-4-11
【答案】解:∵AB=AC=AD=a,∴點B、C、D到A點距離相等.故以A為圓心,以a為半徑作⊙A , 并延長BA交⊙A于E , 連結DE.
∵AB∥CD , ∴弧 BC=弧DE.∴BC=DE=b.
∵BE為⊙A的直徑,∴∠EDB=90°.
在Rt△EDB中,BD= = ,∴BD的長為 .
【解析】∵AB=AC=AD=a,∴點B、C、D到A點距離相等.故以A為圓心,以a為半徑作⊙A,并延長BA交⊙A于E,連結DE.
∵AB∥CD,∴弧 BC=弧DE.∴BC=DE=b.
∵BE為⊙A的直徑,∴∠EDB=90°.
在Rt△EDB中,BD= = ,∴BD的長為 .
【考點精析】關于本題考查的勾股定理的概念和圓周角定理,需要了解直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半才能得出正確答案.
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,大、中、小三個圓圈分別表示有理數(shù)集合、整數(shù)集合、自然數(shù)集合,把這三個圓圈如圖②所示疊放在一起,形成大圓環(huán)A和小圓環(huán)B,則小圓環(huán)B表示的是負整數(shù)集合.請你把-20,0,3.14,-,5填入圖②相應的位置中,并寫出大圓環(huán)A所表示集合的名稱.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD的長為6,寬為3,點O1為矩形的中心,⊙O2的半徑為1,O1O2⊥AB于點P,O1O2=6.若⊙O2繞點P按順時針方向旋轉360°,在旋轉過程中,⊙O2與矩形的邊只有一個公共點的情況一共出現(xiàn)( 。
A.3次
B.4次
C.5次
D.6次
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算:
(1)-24×;
(2)-9+5×(-6)-(-4)2÷(-8);
(3)0.25×(-2)2-[4÷+1]+(-1)2018;
(4)-42÷-[].
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個3×3的方格中填寫了9個數(shù)字,使得每行、每列、每條對角線上的三個數(shù)之和相等,得到的3×3的方格稱為一個三階幻方.
(1)在圖1中空格處填上合適的數(shù)字,使它構成一個三階幻方;
(2)如圖2的方格中填寫了一些數(shù)和字母,當x+y的值為多少時,它能構成一個三階幻方.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖17-Z-10是由邊長為1的小正方形組成的網(wǎng)格.
(1)求四邊形ABCD的面積;
(2)你能判斷AD與CD的位置關系嗎?說出你的理由.
圖17-Z-10
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,∠B=45°,BC=10 cm,過點A作AD∥BC,且點D在點A的右側.點P從點A出發(fā)沿射線AD方向以每秒1cm的速度運動,同時點Q從點C出發(fā)沿射線CB方向以每秒2cm的速度運動,在線段QC上取點E,使得QE =2cm,連結PE,設點P的運動時間為t秒.
(1)若PE⊥BC,則①PE= cm,CE= (用含t的式子表示);
②求BQ的長;
(2)請問是否存在t的值,使以A,B,E,P為頂點的四邊形為平行四邊形?若存在,求出t的值;若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】嘉淇同學要證明命題“兩組對邊分別相等的四邊形是平行四邊形”是正確的,她先用尺規(guī)作出了如圖1的四邊形ABCD,并寫出了如下不完整的已知和求證.
已知:如圖1,在四邊形ABCD中,BC=AD,AB=
求證:四邊形ABCD是 四邊形.
(1)在方框中填空,以補全已知和求證;
(2)按嘉淇同學的思路寫出證明過程;
(3)用文字敘述所證命題的逆命題.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,點D,E分別是AC,AB上的兩點,且 = = ,若△ADE的面積為1cm2 , 則四邊形EBCD的面積為( )cm2 .
A.2
B.3
C.4
D.5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com