【題目】如圖,已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為,與坐標(biāo)軸交于、三點(diǎn),且點(diǎn)的坐標(biāo)為.

1)求二次函數(shù)的解析式;

2)在二次函數(shù)圖象位于軸上方部分有兩個(gè)動(dòng)點(diǎn)、,且點(diǎn)在點(diǎn)的左側(cè),過(guò)、軸的垂線交軸于點(diǎn)兩點(diǎn),當(dāng)四邊形為矩形時(shí),求該矩形周長(zhǎng)的最大值;

3)在(2)中的矩形周長(zhǎng)最大時(shí),連接,已知點(diǎn)軸上一動(dòng)點(diǎn),過(guò)點(diǎn)軸,交直線于點(diǎn),是否存在這樣的點(diǎn),使直線分成面積為的兩部分;若存在,求出該點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

備用圖

【答案】(1);(220;(3)存在;點(diǎn)的坐標(biāo)為

【解析】

1)二次函數(shù)表達(dá)式為:,將點(diǎn)B的坐標(biāo)代入上式,即可求解;

2)設(shè)點(diǎn)的坐標(biāo)為,則的坐標(biāo)為,的坐標(biāo)為,從而求得;,所以矩形MNHG的周長(zhǎng),即可求解;

3)當(dāng)矩形周長(zhǎng)取得最大值時(shí),,從而求出的值,然后求出直線的解析式,設(shè)點(diǎn)坐標(biāo)為,分當(dāng)的面積是面積的時(shí);當(dāng)的面積是面積的時(shí)兩種情況分別列出方程,求出點(diǎn)P的坐標(biāo).

解:(1)設(shè)二次函數(shù)的解析式為

二次函數(shù)圖像的頂點(diǎn)坐標(biāo)為

圖象經(jīng)過(guò)點(diǎn)

解得:

二次函數(shù)的解析式為

2四邊形為矩形,

關(guān)于直線對(duì)稱

設(shè)點(diǎn)的坐標(biāo)為,則的坐標(biāo)為

的坐標(biāo)為

;

矩形的周長(zhǎng)

當(dāng)時(shí),

矩形周長(zhǎng)的最大值為20.

3)存在,理由如下:

當(dāng)矩形周長(zhǎng)取得最大值時(shí),

,對(duì)稱軸為直線

設(shè)直線的解析式為

代入上式得:

,解得

設(shè)點(diǎn)坐標(biāo)為

①當(dāng)的面積是面積的時(shí),

解得:(舍去)

②當(dāng)的面積是面積的時(shí),

解得:;(舍去)

綜上所述,點(diǎn)的坐標(biāo)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】廣西“稻魚(yú)綜合養(yǎng)殖”符合生態(tài)養(yǎng)殖,綠色發(fā)展.某稻魚(yú)綜合養(yǎng)殖戶計(jì)劃購(gòu)買(mǎi)甲,乙兩種禾花魚(yú)魚(yú)苗,經(jīng)調(diào)查,得到以下信息:

購(gòu)買(mǎi)重量小于40 kg

購(gòu)買(mǎi)重量不小于40 kg

甲魚(yú)苗

原價(jià)銷(xiāo)售

打七折銷(xiāo)售

乙魚(yú)苗

原價(jià)銷(xiāo)售

打八折銷(xiāo)售

如果購(gòu)買(mǎi)10 kg的甲魚(yú)苗和5 kg的乙魚(yú)苗需用700元,如果購(gòu)買(mǎi)20 kg的甲魚(yú)苗和15 kg的乙魚(yú)苗需用1600元.

1)甲魚(yú)苗和乙魚(yú)苗的單價(jià)各是多少元?

2)現(xiàn)決定購(gòu)買(mǎi)甲,乙兩種魚(yú)黃共90 kg,其中,乙魚(yú)苗的重量不大于甲魚(yú)苗重量的2倍,設(shè)購(gòu)買(mǎi)甲魚(yú)苗a kg),求該養(yǎng)殖戶購(gòu)買(mǎi)這批魚(yú)苗的總費(fèi)用Wa之間的函數(shù)解析式;

3)在(2)的條件下,請(qǐng)?jiān)O(shè)計(jì)一種購(gòu)買(mǎi)方案,使所需總費(fèi)用最低,并求出最低總費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形中,,過(guò)點(diǎn)于點(diǎn),延長(zhǎng)于點(diǎn),連接,若,線段的長(zhǎng)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)為常數(shù),且)的圖像與反比例函數(shù)的圖像交于,兩點(diǎn).

(1)求一次函數(shù)的表達(dá)式;

(2)若將直線向下平移個(gè)單位長(zhǎng)度后與反比例函數(shù)的圖像有且只有一個(gè)公共點(diǎn),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線Myax2+bx+ca≠0)經(jīng)過(guò)A(﹣1,0),且頂點(diǎn)坐標(biāo)為B(0,1).

(1)求拋物線M的函數(shù)表達(dá)式;

(2)設(shè)Ft,0)為x軸正半軸上一點(diǎn),將拋物線M繞點(diǎn)F旋轉(zhuǎn)180°得到拋物線M1

拋物線M1的頂點(diǎn)B1的坐標(biāo)為   ;

當(dāng)拋物線M1與線段AB有公共點(diǎn)時(shí),結(jié)合函數(shù)的圖象,求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解下列方程:

1

2

3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】新春佳節(jié),電子鞭炮因其安全、無(wú)污染開(kāi)始走俏.某商店經(jīng)銷(xiāo)一種電子鞭炮,已知這種電子鞭炮的成本價(jià)為每盒80元,市場(chǎng)調(diào)查發(fā)現(xiàn),該種電子鞭炮每天的銷(xiāo)售量y(盒)與銷(xiāo)售單價(jià)x(元)有如下關(guān)系:y=﹣2x+320(80≤x≤160).設(shè)這種電子鞭炮每天的銷(xiāo)售利潤(rùn)為w元.

(1)求wx之間的函數(shù)關(guān)系式;

(2)該種電子鞭炮銷(xiāo)售單價(jià)定為多少元時(shí),每天的銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少元?

(3)該商店銷(xiāo)售這種電子鞭炮要想每天獲得2400元的銷(xiāo)售利潤(rùn),又想買(mǎi)得快.那么銷(xiāo)售單價(jià)應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)銷(xiāo)售某種款式童裝,一天可售出30套,每套盈利40.為了擴(kuò)大銷(xiāo)售,增加盈利,商場(chǎng)決定采取降價(jià)措施.若一套童裝每降價(jià)1元,平均每天可多售出2套,設(shè)每套童裝降價(jià)元時(shí),商場(chǎng)一天可獲利潤(rùn).

1)求關(guān)于的函數(shù)解析式.

2)若要商場(chǎng)每天盈利1500元,則應(yīng)降價(jià)多少元?

3)當(dāng)每套童裝降價(jià)多少元時(shí),商場(chǎng)可獲最大利潤(rùn)?最大利潤(rùn)為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是矩形,把矩形沿AC折疊,點(diǎn)B落在點(diǎn)E處,AEDC的交點(diǎn)為O,連接DE

(1)求證:ADE≌△CED;

(2)求證:DEAC

查看答案和解析>>

同步練習(xí)冊(cè)答案