【題目】如圖,點A、F、C、D在同一直線上,點B和點E分別在直線AD的兩側(cè),且AB=DE,A=D,AF=DC

1求證:四邊形BCEF是平行四邊形,

2ABC=90°,AB=4,BC=3,當(dāng)AF為何值時,四邊形BCEF是菱形

【答案】1證明見解析;2

【解析

試題分析:1由AB=DE,A=D,AF=DC,易證得ABCDEF,即可得BC=EF,且BCEF,即可判定四邊形BCEF是平行四邊形;

2由四邊形BCEF是平行四邊形,可得當(dāng)BECF時,四邊形BCEF是菱形,所以連接BE,交CF與點G,證得ABC∽△BGC,由相似三角形的對應(yīng)邊成比例,即可求得AF的值

試題解析:1證明:AF=DC,

AF+FC=DC+FC,即AC=DF

ABC和DEF中,

∴△ABC≌△DEFSAS,

BC=EF,ACB=DFE,

BCEF,

四邊形BCEF是平行四邊形

2解:連接BE,交CF于點G,

四邊形BCEF是平行四邊形,

當(dāng)BECF時,四邊形BCEF是菱形,

∵∠ABC=90°,AB=4,BC=3,

AC==5,

∵∠BGC=ABC=90°,ACB=BCG,

∴△ABC∽△BGC,

,

,

CG=,

FG=CG,

FC=2CG=,

AF=AC-FC=5-=,

當(dāng)AF=時,四邊形BCEF是菱形

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一輛摩拜單車放在水平的地面上,車把頭下方A處與坐墊下方B處在平行于地面的水平線上,A、B之間的距離約為49cm,現(xiàn)測得AC、BCAB的夾角分別為45°68°,若點C到地面的距離CD28cm,坐墊中軸E處與點B的距離BE4cm,求點E到地面的距離(結(jié)果保留一位小數(shù)).(參考數(shù)據(jù):sin68°≈0.93,cos68°≈0.37,cot68°≈0.40)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們定義:有一組對角相等而另一組對角不相等的凸四邊形叫做等對角四邊形.請解決下列問題:

(1)已知:如圖1,四邊形ABCD是等對角四邊形,∠A≠C,A=70°,B=75°,則∠C=   °,D=   °

(2)在探究等對角四邊形性質(zhì)時:

小紅畫了一個如圖2所示的等對角四邊形ABCD,其中,∠ABC=ADC,AB=AD,此時她發(fā)現(xiàn)CB=CD成立,請你證明該結(jié)論;

(3)圖①、圖②均為4×4的正方形網(wǎng)格,線段AB、BC的端點均在網(wǎng)點上.按要求在圖①、圖②中以ABBC為邊各畫一個等對角四邊形ABCD.

要求:四邊形ABCD的頂點D在格點上,所畫的兩個四邊形不全等.

(4)已知:在等對角四邊形ABCD中,∠DAB=60°,ABC=90°,AB=5,AD=4,求對角線AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市舉行傳承好家風(fēng)征文比賽,已知每篇參賽征文成績記m分(60≤m≤100),組委會從1000篇征文中隨機(jī)抽取了部分參賽征文,統(tǒng)計了他們的成績,并繪制了如下不完整的兩幅統(tǒng)計圖表.

請根據(jù)以上信息,解決下列問題:

(1)征文比賽成績頻數(shù)分布表中c的值是________;

(2)補(bǔ)全征文比賽成績頻數(shù)分布直方圖;

(3)若80分以上(含80分)的征文將被評為一等獎,試估計全市獲得一等獎?wù)魑牡钠獢?shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,將矩形折疊,使落在對角線上,折痕為,點落在點 處,若,則 ;

(2)小麗手中有一張矩形紙片,.她準(zhǔn)備按如下兩種方式進(jìn)行折疊:

①如圖2,點在這張矩形紙片的邊上,將紙片折疊,使點落在邊上的點處,折痕為,若,求的長;

②如圖3,點在這張矩形紙片的邊上,將紙片折疊,使落在射線上,折痕為,點,分別落在,處,若,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】母親節(jié)期間,某校部分團(tuán)員參加社會公益活動,準(zhǔn)備購進(jìn)一批許愿瓶進(jìn)行銷售,并將所得利潤捐助給慈善機(jī)構(gòu).根據(jù)市場調(diào)查,這種許愿瓶一段時間內(nèi)的銷售量 (單位:個)與銷售單價 (單位:元/)之間的對應(yīng)關(guān)系如圖所示:

(1) 之間的函數(shù)關(guān)系是

(2)若許愿瓶的進(jìn)價為6/個,按照上述市場調(diào)查的銷售規(guī)律,求銷售利潤 (單位:元)與銷售單價 (單位:元/)之間的函數(shù)關(guān)系式;

(3)若許愿瓶的進(jìn)貨成本不超過900元,要想獲得最大利潤,試確定這種許愿瓶的銷售單價,并求出此時的最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙二人同時從學(xué)校出發(fā),沿同一方向勻速行走,后,甲加快速度繼續(xù)勻速行走(加速的時間忽略不計),乙始終勻速行走,兩人都走了.兩人在行走過程中得到如下表所示的信息:

離開學(xué)校的時間

甲離學(xué)校的距離

乙離學(xué)校的距離

1)根據(jù)題意,甲出發(fā)時的速度為_______,乙的速度為______;

2)求表中的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,每個小方格都是邊長為的正方形,的頂點均在格點上,點的坐標(biāo)是

先將沿軸正方向向上平移個單位長度,再沿軸負(fù)方向向左平移個單位長度得到,畫出,點坐標(biāo)是________;

繞點逆時針旋轉(zhuǎn),得到,畫出,并求出點的坐標(biāo)是________

我們發(fā)現(xiàn)點、關(guān)于某點中心對稱,對稱中心的坐標(biāo)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)課上,老師提出一個問題用直尺和圓規(guī)作以AB為底的等腰直角三角形ABC”.

小美的作法如下:

①分別以點A,B為圓心,大于AB作弧,交于點M,N;

②作直線MN,交AB于點O;

③以點O為圓心,OA為半徑,作半圓,交直線MN于點C;

④連結(jié)ACBC

所以,ABC即為所求作的等腰直角三角形

請根據(jù)小美的作法,用直尺和圓規(guī)作以AB為底的等腰直角三角形ABC,并保留作圖痕跡.這種作法的依據(jù)是

查看答案和解析>>

同步練習(xí)冊答案