【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的邊OAy軸的正半軸上,OCx軸的正半軸上,OA=1,OC=2,點(diǎn)D在邊OC上且OD=1.25

1)求直線AC的解析式.

2)在y軸上是否存在點(diǎn)P,直線PD與矩形對角線AC交于點(diǎn)M,使得△DMC為等腰三角形?若存在,直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.

3)拋物線y=-x2經(jīng)過怎樣平移,才能使得平移后的拋物線過點(diǎn)D和點(diǎn)E(點(diǎn)Ey軸正半軸上),且△ODE沿DE折疊后點(diǎn)O落在邊ABO/處?

【答案】解:(1OA=1,OC=2

A點(diǎn)坐標(biāo)為(0,1),C點(diǎn)坐標(biāo)為(20

設(shè)直線AC的解析式為y=kx+b

解得

直線AC的解析式為

2

3)如圖,設(shè)

點(diǎn)作F

由折疊知

2

【解析】略

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代數(shù)學(xué)名著,有題譯文如下:今有門,不知其高寬;有竿,不知其長短.橫放,竿比門寬長出4尺;豎放,竿比門高長出2尺;斜放,竿與門對角線長恰好相等.問門高、寬和對角線的長各是多少?設(shè)門對角線的長為x尺,下列方程符合題意的是(

A.(x2)2(x4)2x2B.(x2)2(x4)2x2

C.x2(x4)2(x4)2D.(x2)2x2(x4)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,銳角△ABC中,分別以AB、AC為邊向外作等邊△ABE和等邊△ACD,連接BD,CE,試猜想BD與CE的大小關(guān)系,并說明理由.

【深入探究】

(2)如圖2,△ABC中,∠ABC=45°,AB=5cm,BC=3cm,分別以AB、AC為邊向外作正方形ABNE和正方形ACMD,連接BD,求BD的長.

(3)如圖3,在(2)的條件下,以AC為直角邊在線段AC的左側(cè)作等腰直角△ACD,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°BC的垂直平分線DEBCD,交ABEFDE上,并且AF=CE

1)求證:四邊形ACEF是平行四邊形;

2)當(dāng)∠B滿足什么條件時,四邊形ACEF是菱形?請回答并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】按圖填空,并注明理由.

⑴完成正確的證明:如圖,已知AB∥CD,求證:∠BED=∠B+∠D

證明:過E點(diǎn)作EF∥AB(經(jīng)過直線外一點(diǎn)有且只有一條直線與這條直線平行)

∴∠1= ( )

∵AB∥CD(已知)

∴EF∥CD(如果兩條直線與同一直線平行,那么它們也平行)

∴∠2= ( )

又∠BED=∠1+∠2

∴∠BED=∠B+∠D (等量代換).

⑵如圖,在△ABC中,EF∥AD,∠1=∠2,∠BAC=70°.將求∠AGD的過程填寫完整.

解:因?yàn)镋F∥AD(已知)

所以∠2=∠3.( )

又因?yàn)椤?=∠2,所以∠1=∠3.(等量代換)

所以AB∥ ( )

所以∠BAC+ =180°( ).

又因?yàn)椤螧AC=70°,所以∠AGD=110°.

圖⑴ 圖⑵

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,延長平行四邊形ABCD的邊DC到點(diǎn)E,使CE=DC,連接AE,交BC于點(diǎn)F,連接AC、BE.

(1)求證:BF=CF;

(2)若AB=2,AD=4,且∠AFC=2∠D,求平行四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若﹣2amb43a2bn+1是同類項(xiàng),則m+n的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在三角形內(nèi)部,有一點(diǎn)P到三角形三個頂點(diǎn)的距離相等,則點(diǎn)P一定是(

A. 三角形三條角平分線的交點(diǎn) B. 三角形三條垂直平分線的交點(diǎn)

C. 三角形三條中線的交點(diǎn) D. 三角形三條高的交點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把多項(xiàng)式5xy﹣x2+4按x的降冪排列

查看答案和解析>>

同步練習(xí)冊答案