【題目】如圖,把邊長為cm的等邊剪成四部分,從三角形三個頂點往下bcm處,呈30°角下剪刀,使中間部分形成一個小的等邊.若的面積是的,則的值為_____.
【答案】
【解析】
延長ED交AB于H,設AB與FD的交點為G,AC與DE的交點為P,根據(jù)已知條件得到△ABC是等邊三角形,解直角三角形得到AH=(a﹣b),PH=(a﹣b),HG=AH﹣AG=a﹣b,DH=HG=a﹣b,DG=2DH=a﹣b,求得DE=PH﹣DH﹣PE=PH﹣DH﹣DG=b,根據(jù)相似三角形的性質(zhì)即可得到結論.
延長ED交AB于H,設AB與FD的交點為G,AC與DE的交點為P,
∵∠HGD=30°,∠HDG=∠EDF=60°,
∴∠DHG=90°,
∵∠APH=30°,
∴∠A=60°,
同理∠B=∠C=60°,
∴△ABC是等邊三角形,
∵∠HGD=30°,
∴AH=(a﹣b),PH=(a﹣b),
∴HG=AH﹣AG=a﹣b,
∴DH=HG=a﹣b,DG=2DH=a﹣b,
∴DE=PH﹣DH﹣PE=PH﹣DH﹣DG=b,
∵△ABC與△DEF是等邊三角形,
∴△ABC∽△DEF,
∴,
∴,
∴的值為,
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】(本題滿分8分)“切實減輕學生課業(yè)負擔”是我市作業(yè)改革的一項重要舉措.某中學為了解本校學生平均每天的課外作業(yè)時間,隨機抽取部分學生進行問卷調(diào)查,并將調(diào)查結果分為A、B、C、D四個等級.A:1小時以內(nèi),B:1小時-1.5小時,C:1.5小時-2小時,D:小時以上.根據(jù)調(diào)查結果繪制了如圖所示的兩幅不完整的統(tǒng)計圖.請根據(jù)圖中信息解答下列問題:
(1)該校共調(diào)查了_________名學生;
(2)請將條形統(tǒng)計圖補充完整;
(3)表示等級A的扇形圓心角的度數(shù)是____________;
(4)在此次問卷調(diào)查中,甲、乙兩班各有2人平均每天課外作業(yè)時間都是2小時以上,從這4人中任選2人去參加座談,用列表或樹狀圖的方法求選出的2人來自不同班級的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,學校的實驗樓對面是一幢教學樓,小敏在實驗樓的窗口C測得教學樓頂部D的仰角為18°,教學樓底部B的俯角為20°,量得實驗樓與教學樓之間的距離AB=30m.
(1)求∠BCD的度數(shù).
(2)求教學樓的高BD.(結果精確到0.1m,參考數(shù)據(jù):tan20°≈0.36,tan18°≈0.32)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校組織了“英語手抄報”征集活動,現(xiàn)從中隨機抽取部分作品,按A、B、C、D四個等級進行評價,并根據(jù)統(tǒng)計結果繪制了如下兩幅不完整的統(tǒng)計圖.
(1)求抽取了多少份作品;
(2)此次抽取的作品中等級為B的作品有______份,并補全條形統(tǒng)計圖;
(3)若該校共征集到600份作品,請估計等級為A的作品約有多少份?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形中,,是邊的中點,點是正方形內(nèi)一動點,,連接,將線段繞點逆時針旋轉(zhuǎn)得,連接,.則線段長的最小值( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列賦予實際意義的敘述中不正確的是( )
A. 若葡萄的價格是4元/千克,則表示買千克葡萄的金額
B. 若表示一個正方形的邊長,則表示這個正方形的周長
C. 將一個小木塊放在水平桌面上,若4表示小木塊與桌面的接觸面積,表示桌面受到的壓強,則表示小木塊對桌面的壓力
D. 若4和分別表示一個兩位數(shù)中的十位數(shù)字和個位數(shù)字,則表示這個兩位數(shù)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形的邊長為8,是的中點,是邊上的動點,連結,以點為圓心,長為半徑作.
(1)當________時,;
(2)當與正方形的邊相切時,求的長;
(3)設的半徑為,請直接寫出正方形中恰好有兩個頂點在圓內(nèi)的的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在四邊形ABCD中,AD∥BC,∠A=90°,AB=AD=8cm,CD=10cm,點P從點B出發(fā),沿BA方向勻速運動,速度為1cm/s;同時,點Q從點D出發(fā),沿DC方向勻速運動,速度為lcm/s.連接PQ,設運動時間為t(s)(0<t<8).解答下列問題:
(1)當t為何值時,PQ∥AD?
(2)設四邊形APQD的面積為y(cm2),求y與t的函數(shù)關系式;
(3)是否存在某一時刻t,使S四邊形APQO:S四邊形BCQP=17:27?若存在,求出t的值,并求此時PQ的長;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,邊長為2的正方形的頂點在軸正半軸上,反比例函數(shù)的圖像在第一象限的圖像經(jīng)過點,交于.
(1)當點的坐標為時,求和的值;
(2)若點是的中點,求的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com