【題目】如圖, 是⊙ 的直徑, 、 為⊙ 上位于 異側(cè)的兩點,連接 并延長至點 ,使得 ,連接 交⊙ 于點 ,連接 、 、 .
(1)證明: ;
(2)若 ,求 的度數(shù);
(3)設(shè) 交 于點 ,若 是 的中點,求 的值.
【答案】
(1)證明:連接AD,
∵AB是⊙O的直徑,
∴∠ADB=90°,即AD⊥BC,
∵CD=BD,
∴AD垂直平分BC,
∴AB=AC,
∴∠B=∠C,
又∵∠B=∠E,
∴∠E=∠C;
(2)解:∵四邊形AEDF是⊙O的內(nèi)接四邊形,
∴∠AFD=180°-∠E,
又∵∠CFD=180°-∠AFD,
∴∠CFD=∠E=55°,
又∵∠E=∠C=55°,
∴∠BDF=∠C+∠CFD=110°
(3)解:連接OE,
∵∠CFD=∠E=∠C,
∴FD=CD=BD=4,
在Rt△ABD中,cosB= ,BD=4,
∴AB=6,
∵E是 的中點,AB是⊙O的直徑,
∴∠AOE=90°,
∵AO=OE=3,
∴AE=3 ,
∵E是 的中點,
∴∠ADE=∠EAB,
∴△AEG∽△DEA,
∴ ,
即EGED=AE2=18
【解析】(1)由AB是⊙O的直徑,得到AD⊥BC,CD=BD,得到AD垂直平分BC,根據(jù)垂直平分線的性質(zhì),線段垂直平分線上的點與線段的兩個端點的距離相等,得到AB=AC,得到∠B=∠C,根據(jù)圓周角定理得到∠E=∠C;(2)由四邊形AEDF是⊙O的內(nèi)接四邊形,得到∠AFD與∠E互補(bǔ),又∠CFD與∠AFD互補(bǔ),得到∠CFD=∠E,又∠E=∠C,∠BDF=∠C+∠CFD的度數(shù);(3)根據(jù)在同一個圓中,等角所對的弦相等,得到FD=CD=BD,根據(jù)三角函數(shù)值,求出AB的值,由已知E是AB弧的中點,得到AE的值,和△AEG∽△DEA,得到比例,求出GED=AE2的值.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖,則一次函數(shù)y=ax+c的圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D、C、F、B四點在一條直線上,AB=DE,AC⊥BD,EF⊥BD,垂足分別為點C、點F,CD=BF.
求證:(1)△ABC≌△EDF;
(2)AB∥DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠1+∠2﹦180°,∠3﹦∠B,則DE∥BC,下面是王華同學(xué)的推導(dǎo)過程﹐請你幫他在括號內(nèi)填上推導(dǎo)依據(jù)或內(nèi)容.
證明:
∵∠1+∠2﹦180(已知),
∠1﹦∠4 (_________________),
∴∠2﹢_____﹦180°.
∴EH∥AB(___________________________________).
∴∠B﹦∠EHC(________________________________).
∵∠3﹦∠B(已知)
∴ ∠3﹦∠EHC(____________________).
∴ DE∥BC(__________________________________).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A、C分別在x軸上、y軸上,CB//OA,OA=8,若點B的坐標(biāo)為(a,b),且b=.
(1)直接寫出點A、B、C的坐標(biāo);
(2)若動點P從原點O出發(fā)沿x軸以每秒2個單位長度的速度向右運動,當(dāng)直線PC把四邊形OABC分成面積相等的兩部分停止運動,求P點運動時間;
(3)在(2)的條件下,在y軸上是否存在一點Q,連接PQ,使三角形CPQ的面積與四邊形OABC的面積相等?若存在,求點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)場去年種植了10畝地的南瓜,畝產(chǎn)量為2000kg,根據(jù)市場需要,今年該農(nóng)場擴(kuò)大了種植面積,并且全部種植了高產(chǎn)的新品種南瓜,設(shè)南瓜種植面積的增長率為 .
(1)則今年南瓜的種植面積為畝;(用含 的代數(shù)式表示)
(2)如果今年南瓜畝產(chǎn)量的增長率是種植面積的增長率的 ,今年南瓜的總產(chǎn)量為60000kg,求南瓜畝產(chǎn)量的增長率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖,則下列敘述正確的是( )
A.abc<0
B.﹣3a+c<0
C.b2﹣4ac≥0
D.將該函數(shù)圖象向左平移2個單位后所得到拋物線的解析式為y=ax2+c
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一段拋物線: 記為 ,它與 軸交于兩點 , ;將 繞 旋轉(zhuǎn) 得到 ,交 軸于 ;將 繞 旋轉(zhuǎn) 得到 ,交 軸于 ;…如此進(jìn)行下去,直至得到 ,若點 在第 段拋物線 上,則 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com