【題目】如圖,點(diǎn)和點(diǎn)在內(nèi)部.
(1)請(qǐng)你作出點(diǎn),使點(diǎn)到點(diǎn)和點(diǎn)的距離相等,且到兩邊的距離也相等(保留作圖痕跡,不寫(xiě)作法);
(2)請(qǐng)說(shuō)明作圖理由.
【答案】(1)圖見(jiàn)解析;(2)理由見(jiàn)解析.
【解析】
(1)由垂直平分線性質(zhì)可知點(diǎn)到點(diǎn)和點(diǎn)的距離相等即點(diǎn)P在MN的垂直平分線,由角平分線的性質(zhì)可知兩邊的距離相等,即點(diǎn)P在∠AOB的角平分線上.分別作出MN的垂直平分線和∠AOB的角平分線,它們的交點(diǎn)即為所求.
(2)根據(jù)作法即可說(shuō)出理由.
解:(1)如圖,作∠AOB的角平分線與線段MN的垂直平分線交于P點(diǎn),即點(diǎn)到點(diǎn)和點(diǎn)的距離相等,且到兩邊的距離也相等;
(2)理由:角的平分線上的點(diǎn)到角的兩邊的距離相等、直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,無(wú)人飛機(jī)從A點(diǎn)水平飛行10秒至B點(diǎn),在地面上C處測(cè)得A點(diǎn)、B點(diǎn)的仰角分別為45°,75°,已知無(wú)人飛機(jī)的飛行速度為80米/秒,則這架無(wú)人飛機(jī)的飛行高度為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將曲線c1:y=(x>0)繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)60°得到曲線c2,A為直線y=x上一點(diǎn),P為曲線c2上一點(diǎn),PA=PO,且△PAO的面積為6,直線y=x交曲線c1于點(diǎn)B,則OB的長(zhǎng)( )
A.2B.5C.3D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)O在對(duì)角線AC上,以OA的長(zhǎng)為半徑的⊙O與AD,AC分別交于點(diǎn)E,F,且∠ACB=∠DCE.
(1)判斷直線CE與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若tan∠ACB=,BC=4,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠現(xiàn)在平均每天比原計(jì)劃多生產(chǎn)50臺(tái)機(jī)器,現(xiàn)在生產(chǎn)600臺(tái)機(jī)器所需要的時(shí)間與原計(jì)劃生產(chǎn)450臺(tái)機(jī)器所需要的時(shí)間相同.
(1)原計(jì)劃平均每天生產(chǎn)多少臺(tái)機(jī)器?
(2)若該工廠要在不超過(guò)5天的時(shí)間,生產(chǎn)1100臺(tái)機(jī)器,則平均每天至少還要再多生產(chǎn)多少臺(tái)機(jī)器?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖.在△ABC中,∠ACB=60°,AC=1,D是邊AB的中點(diǎn),E是邊BC上一點(diǎn).若DE平分△ABC的周長(zhǎng),則DE的長(zhǎng)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx-的圖象經(jīng)過(guò)點(diǎn)A(-1,0)、C(2,0),與y軸交于點(diǎn)B,其對(duì)稱軸與x軸交于點(diǎn)D
(1)求二次函數(shù)的表達(dá)式及其頂點(diǎn)坐標(biāo);
(2)M(s,t)為拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),
①若平面內(nèi)存在點(diǎn)N,使得A、B、M、N為頂點(diǎn)的四邊形為矩形,直接寫(xiě)出點(diǎn)M的坐標(biāo);
②連接MA、MB,若∠AMB不小于60°,求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,點(diǎn)O在AC上,以OA為半徑的⊙O交AB于點(diǎn)D,BD的垂直平分線交BC于點(diǎn)E,交BD于點(diǎn)F,連接DE.
(1)判斷直線DE與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若AC=6,BC=8,OA=2,求線段DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,E、F分別在AD、BC邊上,且AE=CF.
求證:(1)△ABE≌△CDF;
(2)四邊形BFDE是平行四邊形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com