【題目】如圖,已知正方形ABCD的邊長為2,E是邊BC上的動點,BF⊥AE交CD于點F,垂足為G,連結(jié)CG.下列說法:①AG>GE;②AE=BF;③點G運動的路徑長為π;④CG的最小值為.其中正確的說法是 .(把你認為正確的說法的序號都填上)
【答案】②④.
【解析】
試題分析:∵在正方形ABCD中,AE、BD垂直平分,∴當E移動到與C重合時,AG=GE,故①錯誤;
∵BF⊥AE,∴∠AEB+∠CBF=90°,∵∠AEB+∠BAE=90°,∴∠BAE=∠CBF,在△ABE和△BCF中,∵∠BAE=∠CBF,∠ABE=∠BCF=90°,AB=BC,∴△ABE≌△BCF(AAS),∴故②正確;
根據(jù)題意,G點的軌跡是以AB中點O為圓心,AO為半徑的圓弧,∴圓弧BD的長==,故③錯誤;
由于OC和OG的長度是一定的,因此當O、G、C在同一條直線上時,CG取最小值,OC===,CG的最小值為OC﹣OG=,故④正確;
綜上所述,正確的結(jié)論有②④.故答案為:②④.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線經(jīng)過點A(﹣3,0),點C(0,4),作CD∥x軸交拋物線于點D,作DE⊥x軸,垂足為E,動點M從點E出發(fā)在線段EA上以每秒2個單位長度的速度向點A運動,同時動點N從點A出發(fā)在線段AC上以每秒1個單位長度的速度向點C運動,當一個點到達終點時,另一個點也隨之停止運動,設運動時間為t秒.
(1)求拋物線的解析式;
(2)設△DMN的面積為S,求S與t的函數(shù)關系式;
(3)①當MN∥DE時,直接寫出t的值;
②在點M和點N運動過程中,是否存在某一時刻,使MN⊥AD?若存在,直接寫出此時t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知在正方形網(wǎng)格中,每個小方格都是邊長為1的正方形,A和B兩點在小方格的頂點上,位置如圖所示,點C也在小方格的頂點上,且以A,B,C為頂點的三角形的面積為1個平方單位,則C點的個數(shù)為( ).
A.3個
B.4個
C.5個
D.6個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列描述一次函數(shù)y=-2x+5圖象性質(zhì)錯誤的是( )
(A)y隨x的增大而減小
(B)直線經(jīng)過第一、二、四象限
(C)直線從左到右是下降的
(D)直線與x軸交點坐標是(0,5)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AC和BD相交于O點,若OA=OD,用“SAS”證明△AOB≌△DOC還需( )
A.AB=DC
B.OB=OC
C.∠C=∠D
D.∠AOB=∠DOC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=900,AC=6,BC=8.動點M從點A出發(fā),以每秒1個單位長度的速度沿AB向點B勻速運動;同時,動點N從點B出發(fā),以每秒3個單位長度的速度沿BA向點A勻速運動.過線段MN的中點G作邊AB的垂線,垂足為點G,交△ABC的另一邊于點P,連接PM、PN,當點N運動到點A時,M、N兩點同時停止運動,設運動時間為t秒.
(1)當t= 秒時,動點M、N相遇;
(2)設△PMN的面積為S,求S與t之間的函數(shù)關系式;
(3)取線段PM的中點K,連接KA、KC,在整個運動過程中,△KAC的面積是否變化?若變化,直接寫出它的最大值和最小值;若不變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有一組數(shù)據(jù):2,5,5,6,7,每個數(shù)據(jù)加1后的平均數(shù)為( )
A. 3 B. 4
C. 5 D. 6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com