國家推行“節(jié)能減排,低碳經(jīng)濟(jì)”政策后,環(huán)保節(jié)能設(shè)備的產(chǎn)品供不應(yīng)求.某公司購進(jìn)了A、B兩種節(jié)能產(chǎn)品,其中A種節(jié)能產(chǎn)品每件成本比B種節(jié)能產(chǎn)品多4萬元;若購買相同數(shù)量的兩種節(jié)能產(chǎn)品,A種節(jié)能產(chǎn)品要花120萬元,B種節(jié)能產(chǎn)品要花80萬元.已知A、B兩種節(jié)能產(chǎn)品的每周銷售數(shù)量y(件)與售價x(萬元/件)都滿足函數(shù)關(guān)系y=-x+20(x>0).
(1)求兩種節(jié)能產(chǎn)品的單價;
(2)若A種節(jié)能產(chǎn)品的售價比B種節(jié)能產(chǎn)品的售價高2萬元/件,求這兩種節(jié)能產(chǎn)品每周的總銷售利潤w(萬元)與A種節(jié)能產(chǎn)品售價x(萬元/件)之間的函數(shù)關(guān)系式;并說明A種節(jié)能產(chǎn)品的售價為多少時,每周的總銷售利潤最大?
【答案】分析:(1)設(shè)B種節(jié)能產(chǎn)品的單價為m萬元,A種節(jié)能產(chǎn)品的單價為(m+4)萬元,根據(jù)購買相同數(shù)量的兩種節(jié)能產(chǎn)品,A種節(jié)能產(chǎn)品要花120萬元,B種節(jié)能產(chǎn)品要花80萬元,可得出方程,解出即可;
(2)根據(jù)總利潤=A種產(chǎn)品的利潤+B種產(chǎn)品的利潤=A種產(chǎn)品單件利潤×銷量+B種產(chǎn)品單件利潤×銷量,可得出w與x的函數(shù)關(guān)系式,利用配方法求最值即可.
解答:解:(1)設(shè)B種節(jié)能產(chǎn)品的單價為m萬元,A種節(jié)能產(chǎn)品的單價為(m+4)萬元,
由題意得:,
解得:m=8
經(jīng)檢驗(yàn)m=8是原方程的解,
則m+4=12.
答:A種節(jié)能產(chǎn)品的單價為12萬元,B種節(jié)能產(chǎn)品的單價為8萬元.

(2)A種節(jié)能產(chǎn)品售價x(萬元/件),則B種節(jié)能產(chǎn)品的售價為(x-2)(萬元/件),
由題意得,w=(x-12)(-x+20)+(x-2-8)[-(x-2)+20],
即w=-2x2+64x-460w=-2(x2-32x+230)=-2(x-16)2+52
當(dāng)x=16時,w取得最大,w最大為52.
答:每周的總銷售利潤w(萬元)與A種節(jié)能產(chǎn)品售價x(萬元/件)之間的函數(shù)關(guān)系式為w=-2(x-16)2+52,當(dāng)種節(jié)能產(chǎn)品的售價為16(萬元/件)時,每周的總銷售利潤最大.
點(diǎn)評:本題考查了二次函數(shù)的應(yīng)用及分式方程的應(yīng)用,難點(diǎn)在第二問,注意仔細(xì)審題得出w與x的函數(shù)關(guān)系式,熟練掌握配方法求二次函數(shù)最值得應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

國家推行“節(jié)能減排,低碳經(jīng)濟(jì)”政策后,某環(huán)保節(jié)能設(shè)備生產(chǎn)企業(yè)的產(chǎn)品供不應(yīng)求.若該企業(yè)的某種環(huán)保設(shè)備每月的產(chǎn)量保持在一定的范圍,每套產(chǎn)品的生產(chǎn)成本不高于50萬元,每套產(chǎn)品的售價不低于90萬元.已知這種設(shè)備的月產(chǎn)量x(套)與每套的售價y1(萬元)之精英家教網(wǎng)間滿足關(guān)系式y(tǒng)1=170-2x,月產(chǎn)量x(套)與生產(chǎn)總成本y2(萬元)存在如圖所示的函數(shù)關(guān)系.
(1)直接寫出y2與x之間的函數(shù)關(guān)系式;
(2)求月產(chǎn)量x的范圍;
(3)當(dāng)月產(chǎn)量x(套)為多少時,這種設(shè)備的利潤W(萬元)最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•泉州)國家推行“節(jié)能減排,低碳經(jīng)濟(jì)”政策后,某企業(yè)推出一種叫“CNG”的改燒汽油為天然氣的裝置,每輛車改裝費(fèi)為b元,據(jù)市場調(diào)查知:每輛車改裝前、后的燃料費(fèi)(含改裝費(fèi))y0、y1(單位:元)與正常運(yùn)營時x(單位:天)之間分別滿足關(guān)系式:y0=ax、y1=b+50x,如圖所示.
試根據(jù)圖象解決下列問題:
(1)每輛車改裝前每天的燃料費(fèi)a=
90
90
元;每輛車的改裝費(fèi)b=
4000
4000
元,正常營運(yùn)
100
100
天后,就可以從節(jié)省的燃料費(fèi)中收回改裝成本;
(2)某出租車公司一次性改裝了100輛出租車,因而,正常運(yùn)營多少天后共節(jié)省燃料費(fèi)40萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

為了響應(yīng)國家推行“節(jié)能減排,低碳經(jīng)濟(jì)”號召,某公司2011年研發(fā)出一種新型節(jié)能產(chǎn)品,2011年下半年上市后價格一路攀高.該產(chǎn)品的售價y(元/個)與月份x(7≤x≤12,且x取正整數(shù))之間的關(guān)系如下表:
月份x 7月 8月 9月 10月
售價 y(元/個) 56 60 64 68
該產(chǎn)品的月銷售量p(百個)與月份x(7≤x≤12,且x取正整數(shù))之間滿足函數(shù)關(guān)系:p=-2x+50.
(1)請觀察題中格,用所學(xué)過一次函數(shù)、反比例函數(shù)或二次函數(shù)有關(guān)知識,求出該產(chǎn)品的售價y(元/個)與月份x的函數(shù)關(guān)系式;
(2)請問該公司第幾月份銷售額達(dá)到最大?最大銷售額是多少元?
(3)今1月份開始售價上漲減緩,每月比上月上漲2元/個,且月銷售量在去年12月的月銷售量的基礎(chǔ)上每月減少300個.4月下旬以來,全國各地嚴(yán)重缺電,受“電荒限電”的影響,該公司5月產(chǎn)量下降,導(dǎo)致5月的銷售量比4月份下降1.5a%.該公司為了穩(wěn)定銷售額,決定漲價銷售,5月的銷售價格比4月份上漲0.5a%.此種商品在第5月的銷售額比第4月的銷售額剛好少16800元,請你參考以下數(shù)據(jù),通過計(jì)算估算出的a整數(shù)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

國家推行“節(jié)能減排,低碳經(jīng)濟(jì)”政策后,某企業(yè)生產(chǎn)的一種環(huán)保設(shè)備供不應(yīng)求.若該企業(yè)的這種環(huán)保設(shè)備每年的產(chǎn)量保持在一定的范圍,每套設(shè)備的生產(chǎn)成本不高于50萬元,每套設(shè)備的售價不低于90萬元.已知這種設(shè)備的年產(chǎn)量x(套)與每套的售價y1(萬元)之間滿足關(guān)系式y(tǒng)1=170-2x,年產(chǎn)量x(套)與生產(chǎn)總成本y2(萬元)存在如圖所示的函數(shù)關(guān)系.另外企業(yè)每年其它的總支出為700萬元.
(1)直接寫出y2與x之間的函數(shù)關(guān)系式;
(2)求年產(chǎn)量x的范圍;
(3)當(dāng)年產(chǎn)量x(套)為多少時,這種設(shè)備的年利潤W(萬元)最大?最大利潤是多少?
(4)該企業(yè)希望這種設(shè)備的年利潤不低于1218萬元,請你利用(3)小題中的函數(shù)圖象幫助該企業(yè)確定這種設(shè)備的銷售單價的范圍.在此條件下要使設(shè)備的生產(chǎn)成本最低,你認(rèn)為銷售單價應(yīng)定為多少萬元比較精英家教網(wǎng)合適?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

國家推行“節(jié)能減排,低碳經(jīng)濟(jì)”政策后,某企業(yè)推出一種叫“CNG”的改燒汽油為天然氣的裝置,每輛車改裝費(fèi)為b元,據(jù)市場調(diào)查知:每輛車改裝前、后的燃料費(fèi)(含改裝費(fèi))y0、y1(單位:元)與正常運(yùn)營時x(單位:天)之間分別滿足關(guān)系式:y0=ax、y1=b+50x,如圖所示.
試根據(jù)圖象解決下列問題:
(1)每輛車改裝前每天的燃料費(fèi)a=
90
90
元;每輛車的改裝費(fèi)b=
4000
4000
元,正常營運(yùn)
100
100
天后,就可以從節(jié)省的燃料費(fèi)中收回改裝成本;
(2)某出租車公司一次性改裝了100輛出租車,因而,正常運(yùn)營
200
200
天后共節(jié)省燃料費(fèi)40萬元.

查看答案和解析>>

同步練習(xí)冊答案