【題目】如圖,菱形OABC的頂點(diǎn)A的坐標(biāo)為(3,4),頂點(diǎn)C在x軸的正半軸上,反比例函數(shù)y= (x>0)的圖象經(jīng)過(guò)頂點(diǎn)B,則反比例函數(shù)的表達(dá)式為(
A.y=
B.y=
C.y=
D.y=

【答案】C
【解析】 解:過(guò)A作AM⊥x軸于M,過(guò)B作BN⊥x軸于N,

則∠AMO=∠BNC=90°,
∵四邊形AOCB是菱形,
∴OA=BC=AB=OC,AB//OC,OA//BC,
∴∠AOM=∠BCN,
∵A(3,4),
∴OM=3,AM=4,由勾股定理得:OA=5,
即OC=OA=AB=BC=5,
在△AOM和△BCN中

∴△AOM≌△BCN(AAS),
∴BN=AM=4,CN=OM=3,
∴ON=5+3=8,
即B點(diǎn)的坐標(biāo)是(8,4),
把B的坐標(biāo)代入y= 得:k=32,
即y=
故選:C.
【考點(diǎn)精析】利用菱形的性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知菱形的四條邊都相等;菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角;菱形被兩條對(duì)角線分成四個(gè)全等的直角三角形;菱形的面積等于兩條對(duì)角線長(zhǎng)的積的一半.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形AOCB的邊長(zhǎng)為4,反比例函數(shù)y= (k≠0,且k為常數(shù))的圖象過(guò)點(diǎn)E,且S△AOE=3S△OBE
(1)求k的值;
(2)反比例函數(shù)圖象與線段BC交于點(diǎn)D,直線y= x+b過(guò)點(diǎn)D與線段AB交于點(diǎn)F,延長(zhǎng)OF交反比例函數(shù)y= (x<0)的圖象于點(diǎn)N,求N點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以A點(diǎn)為圓心,以相同的長(zhǎng)為半徑作弧,分別與射線AM,AN交于B,C兩點(diǎn),連接BC,再分別以B,C為圓心,以相同長(zhǎng)(大于BC)為半徑作弧,兩弧相交于點(diǎn)D,連接AD,BD,CD.若∠MBD=40°,則∠NCD的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)有關(guān)資料統(tǒng)計(jì),兩個(gè)城市之間每天的電話通話次數(shù)T與這兩個(gè)城市的人口數(shù)xy(單位:萬(wàn)人)以及兩城市間的距離l(單位:km)之間有下列關(guān)系式(k為常數(shù)) 己知A,B,C三個(gè)城市的人口數(shù)及它們之間的距離如圖所示如果A,B兩個(gè)城市間每天的電話通話次數(shù)為n,B,C兩個(gè)城市間每天的電話通話次數(shù)(用含n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是( 。

①最大的負(fù)整數(shù)是﹣1;②數(shù)軸上表示數(shù)2 和﹣2的點(diǎn)到原點(diǎn)的距離相等;③當(dāng)a≤0時(shí),|a|=﹣a成立;④a的倒數(shù)是;(﹣2)2 和﹣22相等.

A. 2 個(gè) B. 3 個(gè) C. 4 個(gè) D. 5 個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,第一個(gè)正方形ABCD的位置如圖所示,點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)D的坐標(biāo)為(0,4),延長(zhǎng)CBx軸于點(diǎn)A1,作第二個(gè)正方形A1B1C1C;延長(zhǎng)C1B1x軸于點(diǎn)A2,作第三個(gè)正方形A2B2C2C1按這樣的規(guī)律進(jìn)行下去,第2018個(gè)正方形的面積為( 。

A. 20×(2017 B. 20×(2018 C. 20×(4036 D. 20×(4034

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】猜想與證明: 如圖,擺放矩形紙片ABCD與矩形紙片ECGF,使B、C、G三點(diǎn)在一條直線上,CE在邊CD上,連接AF,若M為AF的中點(diǎn),連接DM,EM.

(1)試猜想寫(xiě)出DM與EM的數(shù)量關(guān)系,并證明你的結(jié)論. 拓展與延伸:
(2)若將“猜想與證明”中的紙片換成正方形紙片ABCD與正方形紙片ECGF,其他條件不變,則(1)中的結(jié)論是否仍然成立?請(qǐng)直接寫(xiě)出你的判斷.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,兩根旗桿ACBD相距12m,某人從B點(diǎn)沿AB走向A,一定時(shí)間后他到達(dá)點(diǎn)M,此時(shí)他仰望旗桿的頂點(diǎn)CD,兩次視線夾角為90°,且CM=DM.已知旗桿AC的高為3m,該人的運(yùn)動(dòng)速度為0、5m/s,求這個(gè)人走了多長(zhǎng)時(shí)間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,lA,lB分別表示A步行與B騎車(chē)在同一路上行駛的路程S與時(shí)間t的關(guān)系.

1B出發(fā)時(shí)與A相距______千米.

2B走了一段路后,自行車(chē)發(fā)生故障,進(jìn)行修理,所用的時(shí)間是______小時(shí).

3B出發(fā)后______小時(shí)與A相遇.

4)若B的自行車(chē)不發(fā)生故障,保持出發(fā)時(shí)的速度前進(jìn),______小時(shí)與A相遇,相遇點(diǎn)離B的出發(fā)點(diǎn)______千米.在圖中表示出這個(gè)相遇點(diǎn)C

5)求出A行走的路程S與時(shí)間t的函數(shù)關(guān)系式。

查看答案和解析>>

同步練習(xí)冊(cè)答案