【題目】在連接A地與B地的線段上有四個不同的點D,G,K,Q,下列四幅圖中的實線分別表示某人從A地到B地的不同行進(jìn)路線(箭頭表示行進(jìn)的方向),則路程最長的行進(jìn)路線圖是( )
A.
B.
C.
D.
【答案】D
【解析】解:A、延長AC、BE交于S,
∵∠CAB=∠EDB=45°,
∴AS∥ED,則SC∥DE.
同理SE∥CD,
∴四邊形SCDE是平行四邊形,
∴SE=CD,DE=CS,
即走的路線長是:AC+CD+DE+EB=AC+CS+SE+EB=AS+BS;
B、延長AF、BH交于S1 , 作FK∥GH與BH的延長線交于點K,
∵∠SAB=∠S1AB=45°,∠SBA=∠S1BA=70°,AB=AB,
∴△SAB≌△S1AB,
∴AS=AS1 , BS=BS1 ,
∵∠FGH=180°﹣70°﹣43°=67°=∠GHB,
∴FG∥KH,
∵FK∥GH,
∴四邊形FGHK是平行四邊形,
∴FK=GH,F(xiàn)G=KH,
∴AF+FG+GH+HB=AF+FK+KH+HB,
∵FS1+S1K>FK,
∴AS+BS>AF+FK+KH+HB,
即AC+CD+DE+EB>AF+FG+GH+HB,
C、D、同理可證得AI+IK+KM+MB<AS2+BS2<AN+NQ+QP+PB.
綜上所述,D選項的所走的線路最長.
故選:D.
分別構(gòu)造出平行四邊形和三角形,根據(jù)平行四邊形的性質(zhì)和全等三角形的性質(zhì)進(jìn)行比較,即可判斷.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店需要購進(jìn)甲、乙兩種商品共160件,其進(jìn)價和售價如下表:(注:獲利=售價-進(jìn)價)
(1)若商店計劃銷售完這批商品后能獲利1100元,問甲、乙兩種商品應(yīng)分別購進(jìn)多少件?
(2)若商店計劃投入資金少于4290元,且銷售完這批商品后獲利多于1260元,請問共有幾種購貨方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=和y=在第一象限內(nèi)的圖象如圖,點P是y=的圖象上一動點,PC⊥x軸于點C,交y=的圖象于點A. PD⊥y軸于點D,交y=的圖象于點B。.下面結(jié)論:①△ODB與△OCA的面積相等;②PA與PB始終相等;③四邊形PAOB的面積大小不會發(fā)生變化;④CA=AP. 其中正確結(jié)論是
A.①②③B.①②④ C.①③④D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商品經(jīng)過連續(xù)兩次降價,銷售單價由原來200元降到162元.設(shè)平均每次降價的百分率為x,根據(jù)題意可列方程為( )
A.200(1﹣x)2=162
B.200(1+x)2=162
C.162(1+x)2=200
D.162(1﹣x)2=200
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果點A(a、b)在第三象限,則點B(﹣a+1,3b﹣5)關(guān)于原點的對稱點是( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果將拋物線y=x2+2向下平移1個單位,那么所得新拋物線的表達(dá)式是( )
A.y=(x﹣1)2+2
B.y=(x+1)2+2
C.y=x2+1
D.y=x2+3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果關(guān)于x的一元二次方程x2+2ax+a+2=0有兩個相等的實數(shù)根,那么實數(shù)a的值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com