5、在等腰梯形ABCD中,AD∥BC,AE⊥BC于E,且AE=AD,BC=3AD,則∠B等于( 。
分析:過點D作DF⊥BC于點F,已知AD=AF,AE⊥BC,DF⊥BC,從而可判定四邊形AEFD為正方形,根據(jù)已知及正方形的性質可得到BE=AE,從而求得∠B的度數(shù).
解答:解:過點D作DF⊥BC于點F
∵AE⊥BC,DF⊥BC,AD=AE
∴四邊形AEFD為正方形
∴AD=EF
∵AD=AE,BC=3AD
∴BE=AE
∴∠B=45°
故選B.
點評:此題主要考查學生對正方形的判定及等腰梯形的性質的綜合運用能力.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

17、在等腰梯形ABCD中,AD∥BC,AD=3cm,AB=4cm,∠B=60°,則下底BC的長為
7
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

25、如圖所示,在等腰梯形ABCD中,AD∥BC,AB=CD,點P為BC邊上任意一點,且
PE⊥AB,PF⊥CD,BG⊥CD,垂足分別是E、F、G,請你探索PE、PF、BG的長度之間的關系,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

24、已知:如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,點E為邊BC上一點,且AE=DC.
(1)求證:四邊形AECD是平行四邊形;
(2)當∠B=2∠DCA時,求證:四邊形AECD是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在等腰梯形ABCD中,AD∥BC,M是AD的中點,MB=MC嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,AC⊥BD,垂足為O,過D作DE∥AC交BC的延長線于E.
(1)求證:四邊形ACED是平行四邊形;
(2)若AD=4,BC=8,求梯形ABCD的面積.

查看答案和解析>>

同步練習冊答案