【題目】觀察下列等式:
=1﹣,;,……,
將以上二個等式兩邊分別相加得:
+++=1﹣+﹣+﹣=
用你發(fā)現(xiàn)的規(guī)律解答下列問題:
(1)直接寫出下列各式的計算結(jié)果:
①+++…+= ;
②+++…+= ;
(2)仿照題中的計算形式,猜想并寫出:= ;
(3)解方程:++=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰△ABC三個頂點在⊙O上,直徑AB=12,P為弧BC上任意一點(不與B,C重合),直線CP交AB延長線與點Q,2∠PAB+∠PDA=90°,下列結(jié)論:①若∠PAB=30°,則弧BP的長為;②若PD//BC,則AP平分∠CAB;③若PB=BD,則,④無論點P在弧上的位置如何變化,CP·CQ為定值. 正確的是___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線a // b,點A、E在直線a上,點B、F在直線b上,∠ABC=100°,BD平分∠ABC交直線a于點D,線段EF在線段AB的左側(cè).若將線段EF沿射線 AD的方向平移,在平移的過程中BD所在的直線與 EF所在的直線交于點P.試探索 ∠1的度數(shù)與∠EPB的度數(shù)有怎樣的關(guān)系?
為了解決以上問題,我們不妨從EF的某些特殊位置研究,最后再進行一般化.
(特殊化)
(1)如圖,當∠1=40°,且點P在直線a、b之間時,求∠EPB的度數(shù);
(2)當∠1=70 °時,求∠EPB的度數(shù);
(一般化)
(3)當∠1=n°時,求∠EPB的度數(shù).(直接用含n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,四邊形ABCD為矩形,,,點E是CD的中點,點P在AB上以每秒2個單位的速度由A向B運動,設(shè)運動時間為t秒.
(1)當點P在線段AB上運動了t秒時,__________________(用代數(shù)式表示);
(2)t為何值時,四邊形PDEB是平行四邊形:
(3)在直線AB上是否存在點Q,使以D、E、Q、P四點為頂點的四邊形是菱形?若存在,求出t的值:若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P為函數(shù)y=(x>0)圖象上一點,過點P作x軸、y軸的平行線,分別與函數(shù)y=(x>0)的圖象交于點A、B,則△AOB的面積為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校八年級學生在一次射擊訓練中,隨機抽取10名學生的成績?nèi)缦卤,請回答問題:
環(huán)數(shù) | 6 | 7 | 8 | 9 |
人數(shù) | 1 | 5 | 2 |
(1)填空:10名學生的射擊成績的眾數(shù)是 ,中位數(shù)是 .
(2)求這10名學生的平均成績.
(3)若9環(huán)(含9環(huán))以上評為優(yōu)秀射手,試估計全年級500名學生中有多少是優(yōu)秀射手?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線與雙曲線y=交于A、B兩點,點B的坐標為(-4,-2),C為第一象限內(nèi)雙曲線y=上一點,且點C在直線的上方.
(1)求雙曲線的函數(shù)解析式;
(2)若△AOC的面積為6,求點C的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=(x>0)的圖象交于A(2,﹣1)、B(,n)兩點.直線y=2與y軸交于點C.
1)求一次函數(shù)與反比例函數(shù)的解析式;
2)求△ABC的面積;
3)直接寫出不等式kx+b>在如圖所示范圍內(nèi)的解集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com