【題目】在△ABC中,AB=AC,AC邊上的中線BD把△ABC的周長(zhǎng)分為21厘米和12厘米兩部分,求△ABC各邊的長(zhǎng).
【答案】△ABC各邊的長(zhǎng)為14cm、14cm、5cm.
【解析】
根據(jù)題意,畫(huà)出示意圖,利用三角形的中線定義及三角形周長(zhǎng)和三角形的三邊關(guān)系即可求解三角形三邊的長(zhǎng),注意不符合題意的要舍去.
如圖,
設(shè)AB=AC=cm,BC=cm
∵BD是中線
∴AD=CD=cm
若AB+AD=21 cm,BC+CD=12 cm
即
解得:,
此時(shí),AB=AC=14 cm,BC=5 cm
若AB+AD=12 cm,BC+CD=21 cm
即
解得:,
∵此時(shí)AB=AC=8 cm,BC=17 cm,AB+AC<BC
∴,不合題意,舍去
綜上所述,△ABC各邊的長(zhǎng)為14cm、14cm、5cm.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)(x>0)的圖象經(jīng)過(guò)點(diǎn)A(2 ,1),直線AB與反比例函數(shù)圖象交與另一點(diǎn)B(1,a),射線AC與y軸交于點(diǎn)C,∠BAC=75°,AD⊥y軸,垂足為D.
(1)求反比例函數(shù)的解析式;
(2)求tan∠DAC的值及直線AC的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,△ABC中,AB=AC,∠BAC=90°,E為邊AC任意一點(diǎn),連接BE.
(1)如圖1,若∠ABE=15°,O為BE中點(diǎn),連接AO,且AO=1,求BC的長(zhǎng);
(2)如圖2,F(xiàn)也為AC上一點(diǎn),且滿足AE=CF,過(guò)A作AD⊥BE交BE于點(diǎn)H,交BC于點(diǎn)D,連接DF交BE于點(diǎn)G,連接AG.若AG平分∠CAD,求證:AH=AC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(8分)如圖,AC是⊙O的直徑,OB是⊙O的半徑,PA切⊙O于點(diǎn)A,PB與AC的延長(zhǎng)線交于點(diǎn)M,∠COB=∠APB.
(1)求證:PB是⊙O的切線;
(2)當(dāng)OB=3,PA=6時(shí),求MB,MC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在下列條件中,不能作為判斷△ABD≌△BAC的條件是( )
A. ∠D=∠C,∠BAD=∠ABC B. ∠BAD=∠ABC,∠ABD=∠BAC
C. BD=AC,∠BAD=∠ABC D. AD=BC,BD=AC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(10分)問(wèn)題:如圖(1),在Rt△ACB中,∠ACB=90°,AC=CB,∠DCE=45°,試探究AD、DE、EB滿足的等量關(guān)系.
[探究發(fā)現(xiàn)]
小聰同學(xué)利用圖形變換,將△CAD繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得到△CBH,連接EH,由已知條件易得∠EBH=90°,∠ECH=∠ECB+∠BCH=∠ECB+∠ACD=45°.根據(jù)“邊角邊”,可證△CEH≌ ,得EH=ED.
在Rt△HBE中,由 定理,可得BH2+EB2=EH2,由BH=AD,可得AD、DE、EB之間的等量關(guān)系是 .
[實(shí)踐運(yùn)用]
(1)如圖(2),在正方形ABCD中,△AEF的頂點(diǎn)E、F分別在BC、CD邊上,高AG與正方形的邊長(zhǎng)相等,求∠EAF的度數(shù);
(2)在(1)條件下,連接BD,分別交AE、AF于點(diǎn)M、N,若BE=2,DF=3,BM=2,運(yùn)用小聰同學(xué)探究的結(jié)論,求正方形的邊長(zhǎng)及MN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°.
(1)利用直尺和圓規(guī)按下列要求作圖,并在圖中標(biāo)明相應(yīng)的字母.(保留作圖痕跡,不寫(xiě)作法)
①作AC的垂直平分線,交AB于點(diǎn)O,交AC于點(diǎn)D;
②以O為圓心,OA為半徑作圓,交OD的延長(zhǎng)線于點(diǎn)E.
(2)在(1)所作的圖形中,解答下列問(wèn)題.
①點(diǎn)B與⊙O的位置關(guān)系是__;(直接寫(xiě)出答案)
②若DE=2,AC=8,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)G是正方形ABCD對(duì)角線CA的延長(zhǎng)線一點(diǎn),對(duì)角線BD與AC交于點(diǎn)O,以線段AG為邊作一個(gè)正方形AEFG,連接EB、GD.
(1)求證:EB=GD;
(2)若AB=5,AG=2,求EB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(6分)如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(2,4),B(1,1),C(4,3).
(1)請(qǐng)畫(huà)出△ABC關(guān)于x軸對(duì)稱的△A1B1C1,并寫(xiě)出點(diǎn)A1的坐標(biāo);
(2)請(qǐng)畫(huà)出△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°后的△A2BC2;
(3)求出(2)中C點(diǎn)旋轉(zhuǎn)到C2點(diǎn)所經(jīng)過(guò)的路徑長(zhǎng)(記過(guò)保留根號(hào)和π).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com