已知線段AB=16cm,點C是AB的黃金分割點,且AC>BC,則AC=______cm.
A.16-8B.8-8C.8-8D.10
B

試題分析:把一條線段分成兩部分,使其中較長的線段為全線段與較短線段的比例中項,這樣的線段分割叫做黃金分割,他們的比值( )叫做黃金比.根據(jù)黃金分割點的概念和 故選B
點評:此題考查了黃金分割點的概念,難度適中,注意要熟記黃金比的值
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系內(nèi),已知點A(0,6)、點B(8,0),動點P從點A開始在線段AO上以每秒1個單位長度的速度向點O移動,同時動點Q從點B開始在線段BA上以每秒2個單位長度的速度向點A移動,設點P、Q移動的時間為t秒.

(1)求直線AB的解析式;
(2)當t為何值時,△APQ與△AOB相似?
(3)當t為何值時,△APQ的面積為個平方單位?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,正方形ABCD中,E、F分別是邊AD、CD上的點,DE=CF,AF與BE相交于O,DG⊥AF,垂足為G.
(1)求證:AF⊥BE;
(2)試探究線段AO、BO、GO的長度之間的數(shù)量關系;
(3)若GO:CF=4:5,試確定E點的位置.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

小明和幾位同學做手的影子游戲時,發(fā)現(xiàn)對于同一物體,影子的大小與光源到物體的距離有關.因此,他們認為:可以借助物體的影子長度計算光源到物體的位置.于是,他們做了以下嘗試.
(1)如圖①,垂直于地面放置的正方形框架ABCD,邊長AB為30cm,在其正上方有一燈泡,在燈泡的照射下,正方形框架的橫向影子A′B,D′C的長度和為6cm.那么燈泡離地面的高度為           .
(2)不改變①中燈泡的高度,將兩個邊長為30cm的正方形框架按圖②擺放,請計算此時橫向影子AB,DC的長度和為多少?
(3)有n個邊長為a的正方形按圖③擺放,測得橫向影子ABDC的長度和為b,求燈泡離地面的距離.(寫出解題過程,結(jié)果用含a,b,n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知: == 且3a+2b-c="14" ,則 a+b+c 的值為            。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,AB是斜靠在墻壁的梯子,梯腳點B距墻角點C有1.4m,,梯子上的點D距墻壁1.2m,梯子每級之間的距離(如BD)為0.5m,則梯子的長度是______米。

A. 2          B. 3         C. 4           D. 5

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,矩形ABCD中,E為DC的中點,AD: AB= :2,CP:BP=1:2,連接EP并延長,交AB的延長線于點F,AP、BE相交于點O.下列結(jié)論:①EP平分∠CEB;②△EBP∽△EFB;③△ABP∽△ECP;④AOAP=OB2.其中正確的序號是_______________.(把你認為正確的序號都填上)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,小明在打網(wǎng)球時,使球恰好能打過網(wǎng),而且落點恰好在離網(wǎng)6米的位置上,則球拍擊球的高度h為(  )
A.B.1米C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如下圖所示,在正方形ABCD中,P是BC上的點,且BP=3PC, Q是CD的中點.ΔADQ與ΔQCP是否相似?為什么?

查看答案和解析>>

同步練習冊答案