【題目】油電混動汽車是一種節(jié)油、環(huán)保的新技術(shù)汽車.它將行駛過程中部分原本被浪費的能量回收儲存于內(nèi)置的蓄電池中.汽車在低速行駛時,使用蓄電池帶動電動機(jī)驅(qū)動汽車,節(jié)約燃油.某品牌油電混動汽車與普通汽車的相關(guān)成本數(shù)據(jù)估算如下:

油電混動汽車

普通汽車

購買價格

17.48

15.98

每百公里燃油成本(元)

31

46

某人計劃購入一輛上述品牌的汽車.他估算了未來10年的用車成本,在只考慮車價和燃油成本的情況下,發(fā)現(xiàn)選擇油電混動汽車的成本不高于選擇普通汽車的成本.則他在估算時,預(yù)計平均每年行駛的公里數(shù)至少為( 。

A. 5000 B. 10000 C. 15000 D. 20000

【答案】B

【解析】

設(shè)預(yù)計平均每年行駛x公里,根據(jù)已知條件分別列出兩種汽車10年的用車成本,再根據(jù)“選擇油電混動汽車的成本不高于選擇普通汽車的成本”列出不等式進(jìn)行解答即可.

設(shè)平均每年行駛的公里數(shù)至少為x公里,根據(jù)題意得:

174800+x×10≤159800+x×10,

解得:x≥10000,即預(yù)計平均每年行駛的公里數(shù)至少為10000公里

故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某物流公司引進(jìn)A,B兩種機(jī)器人用來搬運(yùn)某種貨物這兩種機(jī)器人充滿電后可以連續(xù)搬運(yùn)5小時,A種機(jī)器人于某日0時開始搬運(yùn),過了1小時,B種機(jī)器人也開始搬運(yùn),如圖,線段OG表示A種機(jī)器人的搬運(yùn)量yA(千克)與時間x()的函數(shù)圖象,根據(jù)圖象提供的信息解答下列問題

(1)yB關(guān)于x的函數(shù)解析式;

(2)如果A,B兩種機(jī)器人連續(xù)搬運(yùn)5小時,那么B種機(jī)器人比A種機(jī)器人多搬運(yùn)了多少千克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點A、B、C的坐標(biāo)分別為(﹣1,3)、(﹣4,1)(﹣2,1),先將△ABC沿一確定方向平移得到△A1B1C1 , 點B的對應(yīng)點B1的坐標(biāo)是(1,2),再將△A1B1C1繞原點O順時針旋轉(zhuǎn)90°得到△A2B2C2 , 點A1的對應(yīng)點為點A2

(1)畫出△A1B1C1;
(2)畫出△A2B2C2;
(3)求出在這兩次變換過程中,點A經(jīng)過點A1到達(dá)A2的路徑總長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(2,﹣4)在反比例函數(shù)y= 的圖象上,則下列各點在此函數(shù)圖象上的是( 。
A.(2,4)
B.(﹣1,﹣8)
C.(﹣2,﹣4)
D.(4,﹣2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,EF,G,H分別是四邊形ABCD的邊AB,BC,CD,AD的中點

(1)當(dāng)四邊形ABCD是矩形時四邊形EFGH是_________,請說明理由;

(2)當(dāng)四邊形ABCD滿足什么條件時四邊形EFGH為正方形?并說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求代數(shù)式( )÷ 的值,其中a=2sin60°+tan45°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠現(xiàn)有甲種原料360千克,乙種原料290千克,計劃利用這兩種原料生產(chǎn)A、B兩種產(chǎn)品共50件.已知生產(chǎn)一件A種產(chǎn)品需用甲種原料9千克、乙種原料3千克,可獲利潤700元;生產(chǎn)一件B種產(chǎn)品需用甲種原料4千克、乙種原料10千克,可獲利潤1200元。設(shè)生產(chǎn)A種產(chǎn)品的生產(chǎn)件數(shù)為x, A、B兩種產(chǎn)品所獲總利潤為y (元)

(1)試寫出yx之間的函數(shù)關(guān)系式;

(2)求出自變量x的取值范圍;

(3)利用函數(shù)的性質(zhì)說明哪種生產(chǎn)方案獲總利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線經(jīng)過A(﹣1,0),B(5,0),C(0,- )三點.

(1)求拋物線的解析式;
(2)在拋物線的對稱軸上有一點P,使PA+PC的值最小,求點P的坐標(biāo);
(3)點M為x軸上一動點,在拋物線上是否存在一點N,使以A,C,M,N四點構(gòu)成的四邊形為平行四邊形?若存在,求點N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果店以4元/千克的價格購進(jìn)一批水果,由于銷售狀況良好,該店又再次購進(jìn)同一種水果,第二次進(jìn)貨價格比第一次每千克便宜了0.5元,所購水果重量恰好是第一次購進(jìn)水果重量的2倍,這樣該水果店兩次購進(jìn)水果共花去了2200元.

(1)該水果店兩次分別購買了多少元的水果?

(2)在銷售中,盡管兩次進(jìn)貨的價格不同,但水果店仍以相同的價格售出,若第一次購進(jìn)的水果有3%的損耗,第二次購進(jìn)的水果有5%的損耗,該水果店希望售完這些水果獲利不低于1244元,則該水果每千克售價至少為多少元?

查看答案和解析>>

同步練習(xí)冊答案