(2009•萊蕪)已知點(diǎn)M(-2,3)在雙曲線y=上,則下列各點(diǎn)一定在該雙曲線上的是( )
A.(3,-2)
B.(-2,-3)
C.(2,3)
D.(3,2)
【答案】分析:只需把所給點(diǎn)的橫縱坐標(biāo)相乘,結(jié)果是-6的,就在此函數(shù)圖象上.
解答:解:∵點(diǎn)M(-2,3)在雙曲線y=上,
∴k=xy=(-2)×3=-6,
∴只需把各點(diǎn)橫縱坐標(biāo)相乘,結(jié)果為-6的點(diǎn)在函數(shù)圖象上.
A、因?yàn)?×(-2)=-6=k,所以該點(diǎn)在雙曲線y=上.故本選項(xiàng)正確;
B、因?yàn)椋?2)×(-3)=6≠k,所以該點(diǎn)不在雙曲線y=上.故本選項(xiàng)錯(cuò)誤;
C、因?yàn)?×3=6≠k,所以該點(diǎn)不在雙曲線y=上.故本選項(xiàng)錯(cuò)誤;
D、因?yàn)?×2=6≠k,所以該點(diǎn)不在雙曲線y=上.故本選項(xiàng)錯(cuò)誤.
故選A.
點(diǎn)評(píng):本題主要考查反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,所有在反比例函數(shù)上的點(diǎn)的橫縱坐標(biāo)的積應(yīng)等于比例系數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2009•萊蕪)已知點(diǎn)M(-2,3)在雙曲線y=
k
x
上,則下列各點(diǎn)一定在該雙曲線上的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2009•萊蕪)已知二次函數(shù)y=ax2+bx+c的圖象如圖,則點(diǎn)M(ab,c)位于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《四邊形》(11)(解析版) 題型:解答題

(2009•萊蕪)已知正方形ABCD中,E為對(duì)角線BD上一點(diǎn),過E點(diǎn)作EF⊥BD交BC于F,連接DF,G為DF中點(diǎn),連接EG,CG.
(1)求證:EG=CG;
(2)將圖①中△BEF繞B點(diǎn)逆時(shí)針旋轉(zhuǎn)45°,如圖②所示,取DF中點(diǎn)G,連接EG,CG.問(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說明理由;
(3)將圖①中△BEF繞B點(diǎn)旋轉(zhuǎn)任意角度,如圖③所示,再連接相應(yīng)的線段,問(1)中的結(jié)論是否仍然成立?通過觀察你還能得出什么結(jié)論(均不要求證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《三角形》(17)(解析版) 題型:解答題

(2009•萊蕪)已知正方形ABCD中,E為對(duì)角線BD上一點(diǎn),過E點(diǎn)作EF⊥BD交BC于F,連接DF,G為DF中點(diǎn),連接EG,CG.
(1)求證:EG=CG;
(2)將圖①中△BEF繞B點(diǎn)逆時(shí)針旋轉(zhuǎn)45°,如圖②所示,取DF中點(diǎn)G,連接EG,CG.問(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說明理由;
(3)將圖①中△BEF繞B點(diǎn)旋轉(zhuǎn)任意角度,如圖③所示,再連接相應(yīng)的線段,問(1)中的結(jié)論是否仍然成立?通過觀察你還能得出什么結(jié)論(均不要求證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年山東省東營市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•萊蕪)已知正方形ABCD中,E為對(duì)角線BD上一點(diǎn),過E點(diǎn)作EF⊥BD交BC于F,連接DF,G為DF中點(diǎn),連接EG,CG.
(1)求證:EG=CG;
(2)將圖①中△BEF繞B點(diǎn)逆時(shí)針旋轉(zhuǎn)45°,如圖②所示,取DF中點(diǎn)G,連接EG,CG.問(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說明理由;
(3)將圖①中△BEF繞B點(diǎn)旋轉(zhuǎn)任意角度,如圖③所示,再連接相應(yīng)的線段,問(1)中的結(jié)論是否仍然成立?通過觀察你還能得出什么結(jié)論(均不要求證明).

查看答案和解析>>

同步練習(xí)冊(cè)答案