【題目】10分)在△ABC中,BE、CF分別是AC、AB兩條邊上的高,在BE上截取BDAC,在CF的延長(zhǎng)線(xiàn)上截取CGAB,連結(jié)AD、AG。求證:AGAD

【答案】可證明△EBM≌△FCM,

∠EMB≌△FCM,

∠EMB∠FMC,

∵∠CMF∠BMF180°

∴∠BME∠BMF180°

∴EF、M恰好在一直線(xiàn)上

【解析】分析:三角形全等條件中必須是三個(gè)元素,本題已經(jīng)有兩條對(duì)應(yīng)邊相等,只要再找到它們的夾角相等就可以了.

解答:證明:∵BE、CF分別是ACAB兩條邊上的高,

∴∠ABD+∠BAC=90°,

∠GCA+∠BAC=90°,

∴∠GCA=∠ABD,

△GCA△ABD中,

,

∴△GCA≌△ABD

∴AG=AD

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】當(dāng)k<0時(shí),一次函數(shù)y=kx﹣k的圖象不經(jīng)過(guò)( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一元二次方程x2﹣6x﹣6=0配方后化為( )
A.(x﹣3)2=15
B.(x﹣3)2=3
C.(x+3)2=15
D.(x+3)2=3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列運(yùn)算中,正確的是( 。

A. 2a+3b5abB. 2a3+3a25a5

C. 4a2b4ba20D. 6a24a20

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將△ABC沿它的中位線(xiàn)MN折疊后,點(diǎn)A落在點(diǎn)A′處,若∠A=30°,∠B=115°,則∠A′N(xiāo)C=°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以扇形OAB的頂點(diǎn)O為原點(diǎn),半徑OB所在的直線(xiàn)為x軸建立平面直角坐標(biāo)系,點(diǎn)B的坐標(biāo)為(2,0),扇形的圓心角是60°,若拋物線(xiàn) y=x+k與扇形OAB的邊界總有兩個(gè)公共點(diǎn),則實(shí)數(shù)取值范圍是

A. -4k B. -2k

C. -4k D. --2k

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:m﹣[n﹣2m﹣(m﹣n)].

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有兩個(gè)全等的含30°角的直角三角板重疊在一起,如圖,將△A′B′C′繞AC的中點(diǎn)M轉(zhuǎn)動(dòng),斜邊A′B′剛好過(guò)△ABC的直角頂點(diǎn)C,且與△ABC的斜邊AB交于點(diǎn)N,連接AA′、C′C、AC′.若AC的長(zhǎng)為2,有以下五個(gè)結(jié)論:①AA′=1;②C′C⊥A′B′;③點(diǎn)N是邊AB的中點(diǎn);④四邊形AA′CC′為矩形;⑤A′N(xiāo)=B′C= ,其中正確的有(
A.2個(gè)
B.3個(gè)
C.4個(gè)
D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是菱形,點(diǎn)G是BC延長(zhǎng)線(xiàn)上一點(diǎn),連結(jié)AG,分別交BD、CD于點(diǎn)E、F,連結(jié)CE.

(1)求證:∠DAE=∠DCE;

(2)當(dāng)CE=2EF時(shí),EG與EF的等量關(guān)系是   

查看答案和解析>>

同步練習(xí)冊(cè)答案