【題目】如圖,在平面直角坐標(biāo)系中,⊙M與x軸相切于點(diǎn)A(8,0),與y軸分別交于點(diǎn)B(0,4)和點(diǎn)C(0,16),則圓心M到坐標(biāo)原點(diǎn)O的距離是( 。

A.10
B.8
C.4
D.2

【答案】D
【解析】解:如圖連接BM、OM,AM,作MH⊥BC于H.

∵⊙M與x軸相切于點(diǎn)A(8,0),
∴AM⊥OA,OA=8,
∴∠OAM=∠MH0=∠HOA=90°,
∴四邊形OAMH是矩形,
∴AM=OH,
∵M(jìn)H⊥BC,
∴HC=HB=6,
∴OH=AM=10,
在RT△AOM中,OM= = =2
故選D.
如圖連接BM、OM,AM,作MH⊥BC于H,先證明四邊形OAMH是矩形,根據(jù)垂徑定理求出HB,在RT△AOM中求出OM即可.本題考查切線的性質(zhì)、坐標(biāo)與圖形性質(zhì)、垂徑定理、勾股定理等知識,解題的關(guān)鍵是正確添加輔助線,構(gòu)造直角三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】提出問題:
(1)如圖1,在正方形ABCD中,點(diǎn)E,H分別在BC,AB上,若AE⊥DH于點(diǎn)O,求證:AE=DH;

(2)如圖2,在正方形ABCD中,點(diǎn)H,E,G,F(xiàn)分別在AB,BC,CD,DA上,若EF⊥HG于點(diǎn)O,探究線段EF與HG的數(shù)量關(guān)系,并說明理由;

(3)在(2)問條件下,HF∥GE,如圖3所示,已知BE=EC=2,EO=2FO,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△AOB中,∠AOB=90°,OA在x軸上,OB在y軸上,點(diǎn)A,B的坐標(biāo)分別為( ,0),(0,1),把Rt△AOB沿著AB對折得到Rt△AO′B,則點(diǎn)O′的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某科技館對學(xué)生參觀實(shí)行優(yōu)惠,個人票為每張6元,另有團(tuán)體票可售,票價45元,每票最多限10人入館參觀.

(1)如果參觀的學(xué)生人數(shù)36人,至少應(yīng)付多少元?

(2)如果參觀的學(xué)生人數(shù)為48人,至少應(yīng)付多少元?

(3)如果參觀的學(xué)生人數(shù)為一個兩位數(shù)(a表示十位上的數(shù)字,b表示個位上的數(shù)字),用含a、b的代數(shù)式表示至少應(yīng)付給科技館的總金額.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列科學(xué)計(jì)算器的按鍵中,其上面標(biāo)注的符號是軸對稱圖形但不是中心對稱圖形的是( 。
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】臺球是一項(xiàng)高雅的體育運(yùn)動,其中包含了許多物理、幾何學(xué)知識,圖-是一個臺球桌,目標(biāo)球F與本球之間有一個G球阻擋.

(1)擊球者想通過擊打E球,讓E球先撞球臺的AB邊,經(jīng)過一次反彈后再撞擊F球,他應(yīng)將E球打到AB邊上的哪一點(diǎn)?請?jiān)趫D10-①中用尺規(guī)作出這一點(diǎn)H,并作出E球的運(yùn)行路線;(不寫畫法,保留作圖痕跡)

(2)如圖-,現(xiàn)以D為原點(diǎn),建立直角坐標(biāo)系,記A(0,4),C(8,0),E(4,3),F(xiàn)(7,1),求E球按剛才方式運(yùn)行到球的路線長度(忽略球的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A=2x2+3xy﹣2x﹣1,B=﹣x2+xy﹣1

1)求3A+6B

2)若3A+6B的值與x無關(guān),求y的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,下列說法錯誤的是( ).

①∠1∠3是同位角;②∠1∠5是同位角;③∠1∠2是同旁內(nèi)角;④∠1∠4是內(nèi)錯角.

A. ①② B. ②③ C. ②④ D. ③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行于x軸的直線AC分別交拋物線y1=x2(x≥0)與y2= (x≥0)于B、C兩點(diǎn),過點(diǎn)C作y軸的平行線交y1于點(diǎn)D,直線DE∥AC,交y2于點(diǎn)E,則 =

查看答案和解析>>

同步練習(xí)冊答案