已知:如圖,雙曲線的圖象經(jīng)過A(1,2)、B(2,b)兩點.

(1)求雙曲線的解析式;
(2)當(dāng)1<x<2時,反比例函數(shù)函數(shù)值的取值范圍.
(1);(2)

試題分析:(1)由點A(1,2)在上根據(jù)待定系數(shù)法求解即可;
(2)根據(jù)反比例函數(shù)的性質(zhì)結(jié)合圖象特征分析即可.
(1)∵點A(1,2)在
,解得k="2"
∴雙曲線的解析式為
(2)由圖可知,當(dāng)1<x<2時,反比例函數(shù)函數(shù)值的取值范圍是1<y<2.
點評:反比例函數(shù)的性質(zhì)是初中數(shù)學(xué)的重點,貫穿于整個初中數(shù)學(xué)的學(xué)習(xí),是中考中比較常見的知識點,一般難度不大,需熟練掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如果我們把橫坐標(biāo)與縱坐標(biāo)均為整數(shù)的點稱為整點,那么反比例函數(shù)在第四象限的圖象上的整點個數(shù)共有   個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖①,O為坐標(biāo)原點,點B在x軸的正半軸上,四邊形OACB是平行四邊形,sin∠AOB=,反比例函數(shù)y=(k>0)在第一象限內(nèi)的圖象經(jīng)過點A,與BC交于點F.

(1)若OA=10,求反比例函數(shù)解析式;
(2)若點F為BC的中點,且△AOF的面積S=12,求OA的長和點C的坐標(biāo);
(3)在(2)中的條件下,過點F作EF∥OB,交OA于點E(如圖②),點P為直線EF上的一個動點,連接PA,PO.是否存在這樣的點P,使以P、O、A為頂點的三角形是直角三角形?若存在,請直接寫出所有點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角坐標(biāo)系中,已知菱形ABCD的面積為15,頂點A在雙曲線上,CD與y軸重合,且AB⊥x軸于B,AB=5.

(1)求頂點A的坐標(biāo)和k的值;
(2)求直線AD的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,函數(shù)與函數(shù)的圖象相交于A,B兩點,過A,B兩點分別作y軸的垂線,垂足分別為點C,D.則四邊形ACBD的面積為

A.2       B.4     C.6      D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,雙曲線在第一象限內(nèi)如圖所示作一條平行y軸的直線分別交雙曲線于A、B兩點,連OA、OB,則SOAB    。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知雙曲線與直線有一個交點為,則________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)與函數(shù)在同一坐標(biāo)系中的大致圖象是下圖中的
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

點A是反比例函數(shù)圖象上一點,它到原點的距離為5,到x軸的距離為4,則此函數(shù)表達式可能為_________________.

查看答案和解析>>

同步練習(xí)冊答案