【題目】實(shí)驗(yàn)中學(xué)為了獎(jiǎng)勵(lì)在學(xué)!对娫~大會(huì)》上獲獎(jiǎng)的同學(xué),計(jì)劃購(gòu)買甲、乙兩種獎(jiǎng)品共20件,其中甲種獎(jiǎng)品每件40元,乙種獎(jiǎng)品每件30元.
(1)如果購(gòu)買甲、乙兩種獎(jiǎng)品共花費(fèi)650元,求甲、乙兩種獎(jiǎng)品各購(gòu)買了多少件.
(2)如果購(gòu)買乙種獎(jiǎng)品的件數(shù)不超過甲種獎(jiǎng)品件數(shù)的2倍,總花費(fèi)不超過680元,求學(xué)校有幾種不同的購(gòu)買方案.
【答案】(1)甲購(gòu)買了5件乙購(gòu)買了15件;(2)有兩種購(gòu)買方案①購(gòu)買甲獎(jiǎng)品7件,乙獎(jiǎng)品13件;②購(gòu)買甲獎(jiǎng)品8件,乙獎(jiǎng)品12件
【解析】
(1)設(shè)甲種獎(jiǎng)品購(gòu)買了x件,乙種獎(jiǎng)品購(gòu)買了y件,利用購(gòu)買甲、乙兩種獎(jiǎng)品共花費(fèi)了650元列方程組求解即可;
(2)設(shè)甲種獎(jiǎng)品購(gòu)買了a件,乙種獎(jiǎng)品購(gòu)買了(20-a)件,利用購(gòu)買乙種獎(jiǎng)品的件數(shù)不超過甲種獎(jiǎng)品件數(shù)的2倍,總花費(fèi)不超過680元列不等式組,然后解不等式組后確定x的整數(shù)值即可得到該公司的購(gòu)買方案.
(1)設(shè)甲購(gòu)買了x件乙購(gòu)買了y件
解得
答:甲購(gòu)買了5件乙購(gòu)買了15件
(2)設(shè)購(gòu)買甲獎(jiǎng)品為a件.則乙獎(jiǎng)品為(20﹣a)件,根據(jù)題意可得:
解這個(gè)不等式組為≤a≤8
∵a為整數(shù)
∴a=7或8
有兩種購(gòu)買方案
①購(gòu)買甲獎(jiǎng)品7件,乙獎(jiǎng)品13件
②購(gòu)買甲獎(jiǎng)品8件,乙獎(jiǎng)品12件
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖拋物線與坐標(biāo)軸分別交于點(diǎn),,,點(diǎn)P是線段AB上方的拋物線上的一個(gè)動(dòng)點(diǎn).
求拋物線的解析式;
過點(diǎn)P作于點(diǎn)Q,當(dāng)線段PQ的長(zhǎng)度最大時(shí),求點(diǎn)P的坐標(biāo),和PQ最大值;
過點(diǎn)P作x軸的垂線交線段AB于點(diǎn)M,再過點(diǎn)P作軸交拋物線于點(diǎn)N,請(qǐng)問是否存在點(diǎn)P使為等腰直角三角形?若存在,求點(diǎn)P的坐標(biāo);若不存在說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠ABC的平分線交AC于點(diǎn)E,過點(diǎn)E作BE的垂線交AB于點(diǎn)F,⊙O是△BEF的外接圓.
(1)求證:AC是⊙O的切線;
(2)過點(diǎn)E作EH⊥AB,垂足為H,求證:CD=HF;
(3)若CD=1,EF=,求AF長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于一個(gè)函數(shù),如果它的自變量 x 與函數(shù)值 y 滿足:當(dāng)1≤x≤1 時(shí),1≤y≤1,則稱這個(gè)函數(shù)為“閉 函數(shù)”.例如:y=x,y=x 均是“閉函數(shù)”. 已知 y ax2 bx c(a0) 是“閉函數(shù)”,且拋物線經(jīng)過點(diǎn) A(1,1)和點(diǎn) B(1,1),則 a 的取值范圍是______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是正△ABC內(nèi)一點(diǎn),OA=3,OB=4,OC=5,將線段BO以點(diǎn)B為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)60°得到線段BO′,下列結(jié)論:①△BO′A可以由△BOC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到;②點(diǎn)O與O′的距離為4;③∠AOB=150°;④S四邊形AOBO;⑤S△AOC+S△AOB=.其中正確的結(jié)論是( 。
A.①②③⑤B.①②③④C.①②③④⑤D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的頂點(diǎn),B分別在y軸、x軸上,OA=2,OB=1,斜邊AC∥x軸.若反比例函數(shù)(k>0,x>0)的圖象經(jīng)過AC的中點(diǎn)D,則k的值為( )
A.8B.5C.6D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,點(diǎn)C的坐標(biāo)為(0,3),點(diǎn)A在x軸的正半軸上,直線y=x﹣1交邊AB、OA于點(diǎn)D、M,反比例函數(shù)的圖象經(jīng)過點(diǎn)D,與BC的交點(diǎn)為N.
(1)求BN的長(zhǎng).
(2)點(diǎn)P是直線DM上的動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)D、點(diǎn)M重合),連接PB、PC、MN,當(dāng)△BCP的面積等于四邊形ABNM的面積時(shí),求點(diǎn)P的坐標(biāo).
(3)在(2)的條件下,連接CP,以CP為邊作矩形CPEF,使矩形的對(duì)角線的交點(diǎn)G落在直線DM上,請(qǐng)寫出點(diǎn)G的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與、軸交于、、三點(diǎn),其中,拋物線的頂點(diǎn)為.
(1)求的值及頂點(diǎn)的坐標(biāo);
(2)如圖1,若動(dòng)點(diǎn)在第一象限內(nèi)的拋物線上,動(dòng)點(diǎn)在對(duì)稱軸上,當(dāng),且時(shí),求此時(shí)點(diǎn)的坐標(biāo);
(3)如圖2,若點(diǎn)是二次函數(shù)圖像上對(duì)稱軸右側(cè)一點(diǎn),設(shè)點(diǎn)到直線的距離為,到拋物線的對(duì)稱軸的距離為,當(dāng)時(shí),請(qǐng)求出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,過點(diǎn)B作BD⊥AC于點(diǎn)D,BE平分∠ABD交AC于點(diǎn)E.
(1)求證:CB=CE;
(2)若∠CEB=80°,求∠DBC的大。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com