某公司有甲種原料260kg,乙種原料270kg,計劃用這兩種原料生產(chǎn)A、B兩種產(chǎn)品共40件.生產(chǎn)每件A種產(chǎn)品需甲種原料8kg,乙種原料5kg,可獲利潤900元;生產(chǎn)每件B種產(chǎn)品需甲種原料4kg,乙種原料9kg,可獲利潤1100元.設安排生產(chǎn)A種產(chǎn)品x件.
(1)完成下表
甲(kg)乙(kg)件數(shù)(件)
A5xx
B4(40-x)40-x
(2)安排生產(chǎn)A、B兩種產(chǎn)品的件數(shù)有幾種方案?試說明理由;
(3)設生產(chǎn)這批40件產(chǎn)品共可獲利潤y元,將y表示為x的函數(shù),并求出最大利潤.
【答案】分析:(1)根據(jù)總件數(shù)=單件需要的原料×件數(shù)列式即可;
(2)根據(jù)兩種產(chǎn)品所需要的甲、乙兩種原料列出不等式組,然后求解即可;
(3)根據(jù)總利潤等于兩種產(chǎn)品的利潤之和列式整理,然后根據(jù)一次函數(shù)的增減性求出最大利潤即可.
解答:解:(1)表格分別填入:A甲種原料8x,B乙種原料9(40-x);

(2)根據(jù)題意得,,
由①得,x≤25,
由②得,x≥22.5,
∴不等式組的解集是22.5≤x≤25,
∵x是正整數(shù),
∴x=23、24、25,
共有三種方案:
方案一:A產(chǎn)品23件,B產(chǎn)品17件,
方案二:A產(chǎn)品24件,B產(chǎn)品16件,
方案三:A產(chǎn)品25件,B產(chǎn)品15件;

(3)y=900x+1100(40-x)=-200x+44000,
∵-200<0,
∴y隨x的增大而減小,
∴x=23時,y有最大值,
y最大=-200×23+44000=39400元.
點評:本題考查了一次函數(shù)的應用,一元一次不等式組的應用,讀懂題目信息,準確找出題中的等量關系和不等量關系是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•宿遷)某公司有甲種原料260kg,乙種原料270kg,計劃用這兩種原料生產(chǎn)A、B兩種產(chǎn)品共40件.生產(chǎn)每件A種產(chǎn)品需甲種原料8kg,乙種原料5kg,可獲利潤900元;生產(chǎn)每件B種產(chǎn)品需甲種原料4kg,乙種原料9kg,可獲利潤1100元.設安排生產(chǎn)A種產(chǎn)品x件.
(1)完成下表
甲(kg) 乙(kg) 件數(shù)(件)
A 5x x
B 4(40-x) 40-x
(2)安排生產(chǎn)A、B兩種產(chǎn)品的件數(shù)有幾種方案?試說明理由;
(3)設生產(chǎn)這批40件產(chǎn)品共可獲利潤y元,將y表示為x的函數(shù),并求出最大利潤.

查看答案和解析>>

科目:初中數(shù)學 來源:2014年中考數(shù)學二輪精品復習方案設計型問題練習卷(解析版) 題型:解答題

某公司有甲種原料260kg,乙種原料270kg,計劃用這兩種原料生產(chǎn)A、B兩種產(chǎn)品共40件.生產(chǎn)每件A種產(chǎn)品需甲種原料8kg,乙種原料5kg,可獲利潤900元;生產(chǎn)每件B種產(chǎn)品需甲種原料4kg,乙種原料9kg,可獲利潤1100元.設安排生產(chǎn)A種產(chǎn)品x件.

1)完成下表

 

甲(kg

乙(kg

件數(shù)(件)

A

 

5x

x

B

440-x

 

40-x

2)安排生產(chǎn)A、B兩種產(chǎn)品的件數(shù)有幾種方案?試說明理由;

3)設生產(chǎn)這批40件產(chǎn)品共可獲利潤y元,將y表示為x的函數(shù),并求出最大利潤.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2013年初中畢業(yè)升學考試(江蘇宿遷卷)數(shù)學(解析版) 題型:解答題

某公司有甲種原料260kg,乙種原料270kg,計劃用這兩種原料生產(chǎn)A、B兩種產(chǎn)品共40件.生產(chǎn)每件A種產(chǎn)品需甲種原料8kg,乙種原料5kg,可獲利潤900元;生產(chǎn)每件B種產(chǎn)品需甲種原料4kg,乙種原料9kg,可獲利潤1100元.設安排生產(chǎn)A種產(chǎn)品x件.

(1)完成下表

 

甲(kg)

乙(kg)

件數(shù)(件)

A

 

5x

x

B

4(40﹣x)

 

40﹣x

(2)安排生產(chǎn)A、B兩種產(chǎn)品的件數(shù)有幾種方案?試說明理由;

(3)設生產(chǎn)這批40件產(chǎn)品共可獲利潤y元,將y表示為x的函數(shù),并求出最大利潤.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

某公司有甲種原料260kg,乙種原料270kg,計劃用這兩種原料生產(chǎn)A、B兩種產(chǎn)品共40件.生產(chǎn)每件A種產(chǎn)品需甲種原料8kg,乙種原料5kg,可獲利潤900元;生產(chǎn)每件B種產(chǎn)品需甲種原料4kg,乙種原料9kg,可獲利潤1100元.設安排生產(chǎn)A種產(chǎn)品x件.
(1)完成下表
甲(kg)乙(kg)件數(shù)(件)
A5xx
B4(40-x)40-x
(2)安排生產(chǎn)A、B兩種產(chǎn)品的件數(shù)有幾種方案?試說明理由;
(3)設生產(chǎn)這批40件產(chǎn)品共可獲利潤y元,將y表示為x的函數(shù),并求出最大利潤.

查看答案和解析>>

科目:初中數(shù)學 來源:宿遷 題型:解答題

某公司有甲種原料260kg,乙種原料270kg,計劃用這兩種原料生產(chǎn)A、B兩種產(chǎn)品共40件.生產(chǎn)每件A種產(chǎn)品需甲種原料8kg,乙種原料5kg,可獲利潤900元;生產(chǎn)每件B種產(chǎn)品需甲種原料4kg,乙種原料9kg,可獲利潤1100元.設安排生產(chǎn)A種產(chǎn)品x件.
(1)完成下表
甲(kg) 乙(kg) 件數(shù)(件)
A 5x x
B 4(40-x) 40-x
(2)安排生產(chǎn)A、B兩種產(chǎn)品的件數(shù)有幾種方案?試說明理由;
(3)設生產(chǎn)這批40件產(chǎn)品共可獲利潤y元,將y表示為x的函數(shù),并求出最大利潤.

查看答案和解析>>

同步練習冊答案