【題目】如圖,已知AB⊥AD,AC⊥AE,AB=AD,AC=AE,BC分別交AD、DE于點(diǎn)G、F,AC與DE交于點(diǎn)H.
求證:
(1)△ABC≌△ADE;
(2)BC⊥DE.
【答案】
(1)證明:∵AB⊥AD,AC⊥AE,
∴∠DAB=∠CAE=90°,
∴∠DAB+∠DAC=∠CAE+∠DAC,
即∠BAC=∠DAE,
在△ABC和△ADE中,
∴△ABC≌△ADE(SAS)
(2)證明:∵△ABC≌△ADE,
∴∠E=∠C,
∵∠E+∠AHE=90°,∠AHE=∠DHC,
∴∠C+∠DHC=90°,
∴BC⊥DE
【解析】(1)利用AB⊥AD,AC⊥AE,得出∠DAB=∠CAE,進(jìn)一步得出∠BAC=∠DAE,再根據(jù)已知條件及全等的判定方法SAS即可證得△ABC≌△ADE;(2)由△ABC≌△ADE,得出∠E=∠C,利用∠E+∠AHE=90°,推出∠C+∠DHC=90°,結(jié)論成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)有甲、乙兩個(gè)不透明的盒子,甲盒子中裝有3張卡片,卡片上分別寫著3、7、9;乙盒子中裝有4張卡片,卡片上分別寫著2、4、6、8;盒子外有一張寫著5的卡片.所有卡片的形狀、大小都完全相同.現(xiàn)隨機(jī)從甲、乙兩個(gè)盒子中各取出一張卡片,與盒子外的卡片放在一起,用卡片上標(biāo)明的數(shù)量分別作為一條線段的長(zhǎng)度.
(1)請(qǐng)用樹狀圖或列表的方法求這三條線段能組成三角形的概率;
(2)求這三條線段能組成直角三角形的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一件商品的原價(jià)是100元,經(jīng)過兩次提價(jià)后的價(jià)格為121元,如果每次提價(jià)的百分率都是x,根據(jù)題意,下面列出的方程正確的是( )
A.100(1+x)=121
B.100(1﹣x)=121
C.100(1+x)2=121
D.100(1﹣x)2=121
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用下列圖形不能進(jìn)行平面鑲嵌的是( )
A.正三角形和正四邊形
B.正三角形和正六邊形
C.正四邊形和正八邊形
D.正四邊形和正十二邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)(﹣3,4)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為了鼓勵(lì)居民節(jié)約用水,決定實(shí)行兩級(jí)收費(fèi)制度.若每月用水量不超過14噸(含14噸),則每噸按政府補(bǔ)貼優(yōu)惠價(jià)m元收費(fèi);若每月用水量超過14噸,則超過部分每噸按市場(chǎng)價(jià)n元收費(fèi).小明家3月份用水20噸,交水費(fèi)49元;4月份用水18噸,交水費(fèi)42元.
(1)求每噸水的政府補(bǔ)貼優(yōu)惠價(jià)和市場(chǎng)價(jià)分別是多少?
(2)設(shè)每月用水量為x噸,應(yīng)交水費(fèi)為y元,請(qǐng)寫出y與x之間的函數(shù)關(guān)系式;
(3)小明家5月份用水26噸,則他家應(yīng)交水費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O為Rt△ACB的外接圓,點(diǎn)P是AB延長(zhǎng)線上的一點(diǎn),PC切⊙O于點(diǎn)C,連AC
(1)若AC=CP,求的值
(2)若sin∠APC=,求tan∠ABC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在課外學(xué)習(xí)時(shí)遇到這樣一個(gè)問題:
定義:如果二次函數(shù)是常數(shù)與是常數(shù))滿足,則稱這兩個(gè)函數(shù)互為“旋轉(zhuǎn)函數(shù)”.
求函數(shù)的 “旋轉(zhuǎn)函數(shù)”.
小明是這樣思考的:由函數(shù)可知a1=-1,b1=3,c1=-3,根據(jù)a1+a2=0,b1=b2,c1+c2=0求出a2,b2,c2,就能確定這個(gè)函數(shù)的“旋轉(zhuǎn)函數(shù)”.
請(qǐng)參考小明的方法解決下面的問題:
(1)寫出函數(shù)的“旋轉(zhuǎn)函數(shù)”;
(2)若函數(shù)與互為“旋轉(zhuǎn)函數(shù)”,求(m+n)2017的值;
(3)已知函數(shù)的圖象與軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)A、B、C關(guān)于原點(diǎn)的對(duì)稱點(diǎn)分別是A1、B1、C1,試證明經(jīng)過點(diǎn)A1、B1、C1的二次函數(shù)與函數(shù)互為“旋轉(zhuǎn)函數(shù)”.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. 數(shù)據(jù)3,4,4,7,3的眾數(shù)是4
B. 數(shù)據(jù)0,1,2,5,a的中位數(shù)是2
C. 一組數(shù)據(jù)的眾數(shù)和中位數(shù)不可能相等
D. 數(shù)據(jù)0,5,-7,-5,7的中位數(shù)和平均數(shù)都是0
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com