【題目】小明和幾位同學做手的影子游戲時,發(fā)現(xiàn)對于同一物體,影子的大小與光源到物體的距離有關.因此,他們認為:可以借助物體的影子長度計算光源到物體的位置.于是,他們做了以下嘗試.
(1)如圖①,垂直于地面放置的正方形框架ABCD,邊長AB為30cm,在其正上方有一燈泡,在燈泡的照射下,正方形框架的橫向影子A′B,D′C的長度和為6cm.那么燈泡離地面的高度為 .
(2)不改變①中燈泡的高度,將兩個邊長為30cm的正方形框架按圖②擺放,請計算此時橫向影子A′B,D′C的長度和為多少?
(3)有n個邊長為a的正方形按圖③擺放,測得橫向影子A′B,D′C的長度和為b,求燈泡離地面的距離.(寫出解題過程,結(jié)果用含a,b,n的代數(shù)式表示)
【答案】(1)180cm (2)12 cm (3)
【解析】試題分析:(1)設燈泡的位置為點P,易得△PAD∽△PA′D′,設出所求的未知數(shù),利用相似三角形的對應邊的比等于對應高的比,可得燈泡離地面的高度;
(2)同法可得到橫向影子A′B,D′C的長度和;
(3)按照相應的三角形相似,利用相似三角形的對應邊的比等于對應高的比,用字母表示出其他線段,即可得到燈泡離地面的距離.
解:(1)設燈泡離地面的高度為xcm,
∵AD∥A′D′,
∴∠PAD=∠PA′D′,∠PDA=∠PD′A′.
∴△PAD∽△PA′D′.
根據(jù)相似三角形對應高的比等于相似比的性質(zhì),可得,
∴=,
解得x=180.(4分)
(2)設橫向影子A′B,D′C的長度和為ycm,
同理可得∴=,
解得y=12cm;(3分)
(3)記燈泡為點P,如圖:
∵AD∥A′D′,∴∠PAD=∠PA′D′,∠PDA=∠PD′A′.
∴△PAD∽△PA′D′.
根據(jù)相似三角形對應高的比等于相似比的性質(zhì),可得(1分)
(直接得出三角形相似或比例線段均不扣分)
設燈泡離地面距離為x,由題意,得PM=x,PN=x﹣a,AD=na,A′D′=na+b,
∴=1﹣
=1﹣
x=(1分).
科目:初中數(shù)學 來源: 題型:
【題目】圖中的兩個多邊形ABCDEF和A1B1C1D1E1F1相似(各字母已按對應關系排列),∠A=∠D1=135°,∠B=∠E1=120°,∠C1=95°.
(1)求∠F的度數(shù);
(2)如果多邊形ABCDEF和A1B1C1D1E1F1的相似比是1:1.5,且CD=15cm,求C1D1的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知一次函數(shù)的圖像與反比例函數(shù)的圖像交于點和點,與軸交于點.
(1)反比例函數(shù)的表達式 ;一次函數(shù)的表達式 .
(2)若在軸上有一點,其橫坐標是1,連接,求的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知AC是菱形ABCD的對角線,∠BAC=60°,點E是直線BC上的一個動點,連接AE,以AE為邊作菱形AEFG,并且使∠EAG=60°,連接CG,當點E在線段BC上時,如圖1,易證:AB=CG+CE.
(1)當點E在線段BC的延長線上時(如圖2),猜想AB,CG,CE之間的關系并證明;
(2)當點E在線段CB的延長線上時(如圖3),直接寫出AB,CG,CE之間的關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,AB⊥BD,CD⊥BD,垂足分別為B、D,AD和BC相交于點E,EF⊥BD,垂足為F,我們可以證明成立(不要求考生證明).
若將圖中的垂線改為斜交,如圖,AB∥CD,AD,BC相交于點E,過點E作EF∥AB交BD于點F,則:
(1)還成立嗎?如果成立,請給出證明;如果不成立,請說明理由;
(2)請找出S△ABD,S△BED和S△BDC間的關系式,并給出證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲乙兩人做擲一個均勻小立方體的游戲,立方體的每個面上分別標有數(shù)字1,2,3,4,5,6,任意擲出小立方體后,若朝上的數(shù)字小于3,則甲獲勝;若朝上的數(shù)字大于3 ,則乙獲勝.你認為這個游戲?qū)滓译p方公平嗎?為什么?你能不能就上面的小立方體設計一個較為公平的游戲?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),的頂點、、分別與正方形的頂點、、重合.
(1)若正方形的邊長為,用含的代數(shù)式表示:正方形的周長等于_______,的面積等于_______.
(2)如圖2,將繞點順時針旋轉(zhuǎn),邊和正方形的邊交于點.連結(jié),設旋轉(zhuǎn)角.
①試說明;
②若有一個內(nèi)角等于,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(6分)如圖①所示,將直尺擺放在三角板ABC上,使直尺與三角板的邊分別交于點D,E,F,G,量得∠CGD=42°。
(1)求∠CEF的度數(shù);
(2)將直尺向下平移,使直尺的邊緣通過三角板的頂點B,交AC邊于點H,如圖②所示.點H,B在直尺上的讀數(shù)分別為4,13.4,求BC的長(結(jié)果保留兩位小數(shù)).
(參考數(shù)據(jù):sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com