使得關(guān)于x的一元二次方程2x(kx-4)-x2+6=0無(wú)實(shí)數(shù)根的最小整數(shù)k為


  1. A.
    -1
  2. B.
    2
  3. C.
    3
  4. D.
    4個(gè)
B
分析:先把方程變形為關(guān)于x的一元二次方程的一般形式:(2k-1)x2-8x+6=0,要方程無(wú)實(shí)數(shù)根,則△=82-4×6(2k-1)<0,
解不等式,并求出滿足條件的最小整數(shù)k.
解答:方程變形為:(2k-1)x2-8x+6=0,
當(dāng)△<0,方程沒(méi)有實(shí)數(shù)根,即△=82-4×6(2k-1)<0,
解得k>,則滿足條件的最小整數(shù)k為2.
故選B.
點(diǎn)評(píng):本題考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c為常數(shù))根的判別式.當(dāng)△>0,方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)△=0,方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)△<0,方程沒(méi)有實(shí)數(shù)根.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:關(guān)于x的一元二次方程x2-2x+c=0的一個(gè)實(shí)數(shù)根為3.
(1)求c的值;
(2)二次函數(shù)y=x2-2x+c,當(dāng)-2<x≤2時(shí),y的取值范圍;
(3)二次函數(shù)y=x2-2x+c與x軸交于點(diǎn)A、B(A左B右),頂點(diǎn)為點(diǎn)C,問(wèn):是否存在這樣的點(diǎn)P,以P為位似中心,將△ABC放大為原來(lái)的2倍后得到△DEF(即△EDF∽△ABC,相似比為2),使得點(diǎn)D、E恰好在二次函數(shù)上且DE∥AB?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(12分)如圖,已知關(guān)于的一元二次函數(shù))的圖象與軸相交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn),且,頂點(diǎn)為

1.⑴ 求出一元二次函數(shù)的關(guān)系式;

2.⑵點(diǎn)為線段上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)軸的垂線,垂足為.若的面積為,求關(guān)于的函數(shù)關(guān)系式,并寫(xiě)出的取值范圍;

3.⑶ 探索線段上是否存在點(diǎn),使得為直角三角形,如果存在,求出的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(12分)如圖,已知關(guān)于的一元二次函數(shù))的圖象與軸相交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn),且,頂點(diǎn)為

【小題1】⑴ 求出一元二次函數(shù)的關(guān)系式;
【小題2】⑵ 點(diǎn)為線段上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)軸的垂線,垂足為.若的面積為,求關(guān)于的函數(shù)關(guān)系式,并寫(xiě)出的取值范圍;
【小題3】⑶ 探索線段上是否存在點(diǎn),使得為直角三角形,如果存在,求出的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年江蘇省泰州市泰興市洋思中學(xué)中考數(shù)學(xué)三模試卷(解析版) 題型:解答題

已知:關(guān)于x的一元二次方程x2-2x+c=0的一個(gè)實(shí)數(shù)根為3.
(1)求c的值;
(2)二次函數(shù)y=x2-2x+c,當(dāng)-2<x≤2時(shí),y的取值范圍;
(3)二次函數(shù)y=x2-2x+c與x軸交于點(diǎn)A、B(A左B右),頂點(diǎn)為點(diǎn)C,問(wèn):是否存在這樣的點(diǎn)P,以P為位似中心,將△ABC放大為原來(lái)的2倍后得到△DEF(即△EDF∽△ABC,相似比為2),使得點(diǎn)D、E恰好在二次函數(shù)上且DE∥AB?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年山東省東營(yíng)市學(xué)業(yè)水平模擬考試數(shù)學(xué)卷 題型:解答題

(12分)如圖,已知關(guān)于的一元二次函數(shù))的圖象與軸相交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn),且,頂點(diǎn)為

1.⑴ 求出一元二次函數(shù)的關(guān)系式;

2.⑵點(diǎn)為線段上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)軸的垂線,垂足為.若,的面積為,求關(guān)于的函數(shù)關(guān)系式,并寫(xiě)出的取值范圍;

3.⑶ 探索線段上是否存在點(diǎn),使得為直角三角形,如果存在,求出的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案