【題目】已知圓錐的底面半徑為5,母線長為8,則這個(gè)圓錐的側(cè)面積是(
A.13π
B.20π
C.40π
D.200π

【答案】C
【解析】解:圓錐的側(cè)面積=2π×5×8÷2=40π.
故選C.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用圓錐的相關(guān)計(jì)算的相關(guān)知識(shí)可以得到問題的答案,需要掌握?qǐng)A錐側(cè)面展開圖是一個(gè)扇形,這個(gè)扇形的半徑稱為圓錐的母線;圓錐側(cè)面積S=πrl;V圓錐=1/3πR2h.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P、Q是反比例函數(shù)y= 圖像上的兩點(diǎn),PA⊥y軸于點(diǎn)A,QN⊥x軸于點(diǎn)N,作PM⊥x軸于點(diǎn)M,QB⊥y軸于點(diǎn)B,連接PB、QM,△ABP的面積記為S1 , △QMN的面積記為S2 , 則S1S2 . (填“>”或“<”或“=”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P、Q是反比例函數(shù)y= 圖像上的兩點(diǎn),PA⊥y軸于點(diǎn)A,QN⊥x軸于點(diǎn)N,作PM⊥x軸于點(diǎn)M,QB⊥y軸于點(diǎn)B,連接PB、QM,△ABP的面積記為S1 , △QMN的面積記為S2 , 則S1S2 . (填“>”或“<”或“=”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知甲數(shù)為a×10n , 乙數(shù)是甲數(shù)的10倍,丙數(shù)是乙數(shù)的2倍,甲、乙、丙三數(shù)的積為1.6×1012 , 求a,n的值.(其中1≤a≤10,n為正整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平行四邊形ABCD的兩個(gè)頂點(diǎn)A、C在反比例函數(shù)(k0)圖象上,點(diǎn)B、D在x軸上,且B、D兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱,AD交y軸于P點(diǎn)

(1)已知點(diǎn)A的坐標(biāo)是(2,3),求k的值及C點(diǎn)的坐標(biāo);

(2)若APO的面積為2,求點(diǎn)D到直線AC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各組中的四條線段成比例的是(

A.1cm,2cm,20cm,40cmB.1cm2cm,3cm,4cm

C.4cm,2cm,1cm,3cmD.5cm,10cm,15cm,20cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為了測量出樓房AC的高度,從距離樓底C處米的點(diǎn)D(點(diǎn)D與樓底C在同一水平面上)出發(fā),沿斜面坡度為i=1:的斜坡DB前進(jìn)30米到達(dá)點(diǎn)B,在點(diǎn)B處測得樓頂A的仰角為53°,求樓房AC的高度(參考數(shù)據(jù):sin53°≈0.8,cos53°≈0.6,tan53°≈,計(jì)算結(jié)果用根號(hào)表示,不取近似值).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查居民的生活水平,有關(guān)部門對(duì)某居委會(huì)的50戶居民的家庭存款額進(jìn)行了調(diào)查,數(shù)據(jù)(單位:萬元)如下:
1.7 3.5 2.3 6.4 2.0 1.9 6.7 4.8 5.0 4.7
2.3 3.4 5.6 3.7 2.2 3.3 5.8 4.3 3.6 3.8
3.0 5.1 7.0 3.1 2.9 4.9 5.8 3.6 3.0 4.2
4.0 3.9 5.1 6.3 1.8 3.2 5.1 5.7 3.9 3.1
2.5 2.8 4.5 4.9 5.3 2.6 7.2 1.9 5.0 3.8
(1)這50個(gè)家庭存款額的最大值、最小值分別是多少?它們相差多少?
(2)填表:

存款額x(萬元)

劃記

戶數(shù)

1.0≤x<2.0

2.0≤x<3.0

3.0≤x<4.0

4.0≤x<5.0

5.0≤x<6.0

6.0≤x<7.0

7.0≤x<8.0


(3)根據(jù)上表談?wù)勥@50戶家庭存款額的分布情況.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】尤秀同學(xué)遇到了這樣一個(gè)問題:如圖1所示,已知AF,BE是△ABC的中線,且AF⊥BE,垂足為P,設(shè)BC=a,AC=b,AB=c.

求證:

該同學(xué)仔細(xì)分析后,得到如下解題思路:

先連接EF,利用EF為△ABC的中位線得到△EPF∽△BPA,故,設(shè)PF=m,PE=n,用m,n把PA,PB分別表示出來,再在Rt△APE,Rt△BPF中利用勾股定理計(jì)算,消去m,n即可得證.

(1)請(qǐng)你根據(jù)以上解題思路幫尤秀同學(xué)寫出證明過程.

(2)利用題中的結(jié)論,解答下列問題:

在邊長為3的菱形ABCD中,O為對(duì)角線AC,BD的交點(diǎn),E,F(xiàn)分別為線段AO,DO的中點(diǎn),連接BE,CF并延長交于點(diǎn)M,BM,CM分別交AD于點(diǎn)G,H,如圖2所示,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案