【題目】氣溫隨著高度的升高而下降,下降的一般規(guī)律是從地面到高空11 km(包括11 km),每升高1 km氣溫下降6 ℃;高于11 km時(shí),氣溫不再發(fā)生變化,地面的氣溫為20 ℃時(shí),設(shè)高空中x km處的氣溫為y ℃.

(1)當(dāng)0≤x≤11時(shí),求yx之間的關(guān)系式;

(2)畫(huà)出氣溫隨高度(包括高于11 km)變化的圖像;

(3)在離地面4.5 km14 km的高空處,氣溫分別是多少?

【答案】1y206x;(2)圖像見(jiàn)解析;(3)在離地面4.5 km的高空處,氣溫是-7 ℃,在離地面14 km的高空處,氣溫是-46 ℃.

【解析】

(1)根據(jù)氣溫等于該處的溫度減去下降的溫度列式即可;(2)利用兩點(diǎn)法作出函數(shù)圖象即可;(3)把x=4.5和11分別代入函數(shù)關(guān)系式求出y的值即可.

(1)當(dāng)0≤x≤11時(shí),y與x之間的關(guān)系式為y=20-6x;

(2)氣溫隨高度(包括高于11 km)變化的圖像如圖所示.

(3)當(dāng)x=4.5時(shí),y=20-6×4.5=-7.當(dāng)x=14時(shí),因?yàn)樵陔x地面11 km以上高度時(shí),氣溫不再發(fā)生變化,所以14 km高空處的氣溫相當(dāng)于11 km高空處的氣溫,當(dāng)x=11時(shí),y=20-6×11=-46,所以在離地面4.5 km的高空處,氣溫是-7 ℃,在離地面14 km的高空處,氣溫是-46 ℃.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,時(shí)鐘是我們常見(jiàn)的生活必需品,其中蘊(yùn)含著許多數(shù)學(xué)知識(shí).

1我們知道,分針和時(shí)針轉(zhuǎn)動(dòng)一周都是 度,分針轉(zhuǎn)動(dòng)一周是 分鐘,時(shí)針轉(zhuǎn)動(dòng)一周有12小時(shí),等于720分鐘;所以,分針每分鐘轉(zhuǎn)動(dòng) 度,時(shí)針每分鐘轉(zhuǎn)動(dòng) .

25:005:30,分針與時(shí)針各轉(zhuǎn)動(dòng)了多少度?

3請(qǐng)你用方程知識(shí)解釋:從1:00開(kāi)始,在1:002:00之間,是否存在某個(gè)時(shí)刻,時(shí)針與分針在同一條直線上?若不存在,說(shuō)明理由;若存在,求出從1:00開(kāi)始經(jīng)過(guò)多長(zhǎng)時(shí)間,時(shí)針與分針在同一條直線上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,二次函數(shù)y=x2+mx+2m﹣7的圖象經(jīng)過(guò)點(diǎn)(1,0).

(1)求拋物線的表達(dá)式;
(2)把﹣4<x<1時(shí)的函數(shù)圖象記為H,求此時(shí)函數(shù)y的取值范圍;
(3)在(2)的條件下,將圖象H在x軸下方的部分沿x軸翻折,圖象H的其余部分保持不變,得到一個(gè)新圖象M.若直線y=x+b與圖象M有三個(gè)公共點(diǎn),求b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2015隨州)甲騎摩托車從A地去B地,乙開(kāi)汽車從B地去A地,同時(shí)出發(fā),勻速行駛,各自到達(dá)終點(diǎn)后停止,設(shè)甲、乙兩人間距離為s(單位:千米),甲行駛的時(shí)間為t(單位:小時(shí)),st之間的函數(shù)關(guān)系如圖所示,有下列結(jié)論:

①出發(fā)1小時(shí)時(shí),甲、乙在途中相遇;

②出發(fā)1.5小時(shí)時(shí),乙比甲多行駛了60千米;

③出發(fā)3小時(shí)時(shí),甲、乙同時(shí)到達(dá)終點(diǎn);

④甲的速度是乙速度的一半.

其中,正確結(jié)論的個(gè)數(shù)是( 。

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+c與x軸正半軸交于點(diǎn)A(3,0),與y軸交于點(diǎn)B(0,3),點(diǎn)P是x軸上一動(dòng)點(diǎn),過(guò)點(diǎn)P作x軸的垂線交拋物線于點(diǎn)C,交直線AB于點(diǎn)D,設(shè)P(x,0).

(1)求拋物線的函數(shù)表達(dá)式;
(2)當(dāng)0<x<3時(shí),求線段CD的最大值;
(3)在△PDB和△CDB中,當(dāng)其中一個(gè)三角形的面積是另一個(gè)三角形面積的2倍時(shí),求相應(yīng)x的值;
(4)過(guò)點(diǎn)B,C,P的外接圓恰好經(jīng)過(guò)點(diǎn)A時(shí),x的值為 . (直接寫(xiě)出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程組:①,比較適宜的方法是( )

A.①②用代入法,③④用加減法B.①③用代入法,②④用加減法

C.②③用代入法,①④用加減法D.②④用代入法,①③用加減法

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ab,則下列說(shuō)法中,錯(cuò)誤的是( 。

A.a+1b+1B.ab

C.2a12b1D.5a+1>﹣5b+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】【發(fā)現(xiàn)證明】
如圖1,點(diǎn)E,F(xiàn)分別在正方形ABCD的邊BC,CD上,∠EAF=45°,試判斷BE,EF,F(xiàn)D之間的數(shù)量關(guān)系.
小聰把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,通過(guò)證明△AEF≌△AGF;從而發(fā)現(xiàn)并證明了EF=BE+FD.

(1)【類比引申】如圖2,點(diǎn)E、F分別在正方形ABCD的邊CB、CD的延長(zhǎng)線上,∠EAF=45°,連接EF,請(qǐng)根據(jù)小聰?shù)陌l(fā)現(xiàn)給你的啟示寫(xiě)出EF、BE、DF之間的數(shù)量關(guān)系,并證明;

(2)【聯(lián)想拓展】如圖4,如圖,∠BAC=90°,AB=AC,點(diǎn)E、F在邊BC上,且∠EAF=45°,若BE=3,EF=5,求CF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一般情況下,不成立,但有些數(shù)可以使得它成立,例如:a1,b2.我們稱使得成立的一對(duì)數(shù)a,b相伴數(shù)對(duì),記為(a,b).

1)判斷數(shù)對(duì)(﹣2,1),(3,3)是否是相伴數(shù)對(duì);

2)若(k,﹣1)是相伴數(shù)對(duì),求k的值;

3)若(4,m)是相伴數(shù)對(duì),求代數(shù)式的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案