【題目】我市某蔬菜生產(chǎn)基地在氣溫較低時,用裝有恒溫系統(tǒng)的大棚栽培一種在自然光照且溫度為18 ℃的條件下生長最快的新品種.如圖是某天恒溫系統(tǒng)從開啟到關(guān)閉及關(guān)閉后,大棚內(nèi)溫度y(℃)隨時間x(小時)變化的函數(shù)圖象,其中BC段是雙曲線y=的一部分.請根據(jù)圖中信息解答下列問題:

(1)恒溫系統(tǒng)在這天保持大棚內(nèi)溫度18 ℃的時間有多少小時?

(2)求k的值;

(3)當(dāng)x=16時,大棚內(nèi)的溫度約為多少度?

【答案】(1)10(2)216(3)13.5

【解析】1)根據(jù)圖象直接得出大棚溫度18℃的時間為12﹣2=10(小時);(2)利用待定系數(shù)法求反比例函數(shù)解析式即可;(3)將x=16代入函數(shù)解析式求出y的值即可.

解:(1)恒溫系統(tǒng)在這天保持大棚溫度18℃的時間為12﹣2=10小時.

(2)∵點B(12,18)在雙曲線y=上,

∴18=,

∴解得:k=216.

(3)當(dāng)x=16時,y==13.5,

所以當(dāng)x=16時,大棚內(nèi)的溫度約為13.5℃.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AOB=30°,OP平分AOB,PDOBD,PCOBOAC,若PC=6,則PD=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人相約元旦登山,甲、乙兩人距地面的高度y(m)與登山時間x(min)之間的函數(shù)圖像如圖所示,根據(jù)圖像所提供的信息解答下列問題:

1t= min.

2)若乙提速后,乙登山的上升速度是甲登山的上升速度3倍,

則甲登山的的上升速度是 m/min;

請求出甲登山過程中,距地面的高度y(m)與登山時間x(min)之間的函數(shù)關(guān)系式.

當(dāng)甲、乙兩人距地面高度差為70m時,求x的值(直接寫出滿足條件的x值).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是將菱形ABCD以點O為中心按順時針方向分別旋轉(zhuǎn)90°,180°,270°后形成的圖形。若,AB=2,則圖中陰影部分的面積為

A. 124 B. 5 C. 12-4 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AB=13,BC=50,BC邊上的高為12.點P從點B出發(fā),沿B﹣A﹣D﹣A運動,沿B﹣A運動時的速度為每秒13個單位長度,沿A﹣D﹣A運動時的速度為每秒8個單位長度.點Q從點 B出發(fā)沿BC方向運動,速度為每秒5個單位長度.P、Q兩點同時出發(fā),當(dāng)點Q到達點C時,P、Q兩點同時停止運動.設(shè)點P的運動時間為t(秒).連結(jié)PQ.

(1)當(dāng)點P沿A﹣D﹣A運動時,求AP的長(用含t的代數(shù)式表示).

(2)連結(jié)AQ,在點P沿B﹣A﹣D運動過程中,當(dāng)點P與點B、點A不重合時,記APQ的面積為S.求S與t之間的函數(shù)關(guān)系式.

(3)過點Q作QRAB,交AD于點R,連結(jié)BR,如圖.在點P沿B﹣A﹣D運動過程中,當(dāng)線段PQ掃過的圖形(陰影部分)被線段BR分成面積相等的兩部分時t的值.

(4)設(shè)點C、D關(guān)于直線PQ的對稱點分別為C′、D′,直接寫出C′D′BC時t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究題.

如圖,、分別為數(shù)軸上的兩點,點對應(yīng)的數(shù)為點對應(yīng)的數(shù)為

)請寫出與、兩點距離相等的點所對應(yīng)的數(shù).

)現(xiàn)有一只電子螞蟻點出發(fā),以單位/秒的速度向左運動,同時另一只電子螞蟻恰好從點出發(fā),以單位/秒的速度向右運動,設(shè)兩只電子螞蟻在數(shù)軸上的點相遇,你知道點對應(yīng)的數(shù)是多少嗎?

)若當(dāng)電子螞蟻點出發(fā)時,以單位/秒的速度向左運動,同時另一只電子螞蟻恰好從點出發(fā),以單位/秒的速度也向左運動,設(shè)兩只電子螞蟻在數(shù)軸上的點相遇,你知道點對應(yīng)的數(shù)是多少嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AD平分∠BAC,按如下步驟作圖:第一步,分別以點AD為圓心,以大于的長為半徑在AD的兩側(cè)作弧,交于兩點M、N;第二步,連結(jié)MN,分別交ABAC于點E、F;第三步,連結(jié)DEDF..若BD=6,AF=4CD=3,則BE的長是( )

A. 2 B. 4 C. 6 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC是等邊三角形,DF分別為BC、AB邊上的點,AF=BD,AD為邊作等邊ΔADE.

(1)求證:AE=CF;

(2)求∠BEF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是長為10m,傾斜角為37°的自動扶梯,平臺BD與大樓CE垂直,且與扶梯AB的長度相等,在B處測得大樓頂部C的仰角為65°,求大樓CE的高度(結(jié)果保留整數(shù)).

(參考數(shù)據(jù):sin37°≈tan37°≈,sin65°≈tan65°≈

查看答案和解析>>

同步練習(xí)冊答案