如圖,四邊形ABCD是矩形,A,B兩點(diǎn)在x軸的正半軸上,C,D兩點(diǎn)在拋物線上,設(shè)OA=(0<<3),矩形ABCD的周長為,則的函數(shù)解析式為      

 

【答案】

【解析】

試題分析:已知C,D兩點(diǎn)在拋物線上,可知拋物線對(duì)稱軸為x=

過頂點(diǎn)F作FE⊥OB,垂直為E。CD所在四邊形為矩形且CD在拋物線上,易知EF平分AB。所以AE=EB=OE-OA=3-m,易知D點(diǎn)坐標(biāo)(OA,AD)則

所以矩形ABCD的周長為=4AE+2AD=4(3-m)+2()=

考點(diǎn):二次函數(shù)

點(diǎn)評(píng):本題難度中等,主要考查學(xué)生對(duì)二次函數(shù)的掌握。這類題型,抓住矩形的性質(zhì)確定各點(diǎn)坐標(biāo)與拋物線的關(guān)系為解題關(guān)鍵,做這類題要注意數(shù)形結(jié)合思想的運(yùn)用。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對(duì)角線AC與BD互相垂直平分于點(diǎn)O,設(shè)AC=2a,BD=2b,請(qǐng)推導(dǎo)這個(gè)四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對(duì)角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對(duì)角線AC、BD交于點(diǎn)P,過點(diǎn)P作直線交AD于點(diǎn)E,交BC于點(diǎn)F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點(diǎn),且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD是正方形,點(diǎn)E是BC的中點(diǎn),∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點(diǎn)E是BC的中點(diǎn)”改為“E是BC上任意一點(diǎn)”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案