【題目】不等式3x﹣2≥4(x﹣1)的所有非負整數(shù)解的和為__.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘漁船位于小島M的北偏東45°方向、距離小島180海里的A處,漁船從A處沿正南方向航行一段距離后,到達位于小島南偏東60°方向的B處。
(1)求漁船從A到B的航行過程中與小島M之間的最小距離(結(jié)果用根號表示):
(2)若漁船以20海里/小時的速度從B沿BM方向行駛,求漁船從B到達小島M的航行時間(結(jié)果精確到0.1小時)。(參考數(shù)據(jù):)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】46中8年級11班為開展“迎2013年新春”的主題班會活動,派了小林和小明兩位同學(xué)去學(xué)校附近的超市購買鋼筆作為獎品,已知該超市的英雄牌鋼筆每支8元,派克牌鋼筆每支4.8元,他們要購買這兩種筆共40支.
(1)如果他們兩人一共帶了240元,全部用于購買獎品,那么能買這兩種筆各多少支?
(2)小林和小明根據(jù)主題班會活動的設(shè)獎情況,決定所購買的英雄牌鋼筆數(shù)量要少于派克牌鋼筆的數(shù)量的,但又不少于派克牌鋼筆的數(shù)量的。如果他們買了英雄牌鋼筆支,買這兩種筆共花了元,
①請寫出(元)關(guān)于(支)的函數(shù)關(guān)系式,并求出自變量的取值范圍;
②請幫他們計算一下,這兩種筆各購買多少支時,所花的錢最少,此時花了多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】分解因式(2x+3)2﹣x2的結(jié)果是( 。
A. 3(x2+4x+3) B. 3(x2+2x+3) C. (3x+3)(x+3) D. 3(x+1)(x+3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線與y軸交于C點,與x軸交于A,B兩點(點A在點B左側(cè)),且點A的橫坐標為-1.
(1)求a的值;
(2)設(shè)拋物線的頂點P關(guān)于原點的對稱點為,求點的坐標;
(3)將拋物線在A,B兩點之間的部分(包括A, B兩點),先向下平移3個單位,再向左平移m()個單位,平移后的圖象記為圖象G,若圖象G與直線無交點,求m的取值范圍
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將△ABC繞點A按逆時針方向旋轉(zhuǎn)θ度,并使各邊長變?yōu)樵瓉淼膎倍,得△AB′C′,即如圖①,我們將這種變換記為[θ,n].
(1)、如圖①,對△ABC作變換[50°,]得△AB′C′,則S△AB′C′:S△ABC= ;直線BC與直線B′C′所夾的銳角為 度;
(2)、如圖②,△ABC中,∠BAC=30°,∠ACB=90°,對△ABC 作變換[θ,n]得△AB'C',使點B、C、C′在同一直線上,且四邊形ABB'C'為矩形,求θ和n的值;
(3)、如圖③,△ABC中,AB=AC,∠BAC=36°,BC=l,對△ABC作變換[θ,n]得△AB′C′,使點B、C、B′在同一直線上,且四邊形ABB'C'為平行四邊形,求θ和n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電器超市銷售每臺進價分別為200元、170元的A、B兩種型號的電風(fēng)扇,下表是近兩周的銷售情況:
(進價、售價均保持不變,利潤=銷售收入﹣進貨成本)
(1)求A、B兩種型號的電風(fēng)扇的銷售單價;
(2)若超市準備用不多于5400元的金額再采購這兩種型號的電風(fēng)扇共30臺,求A種型號的電風(fēng)扇最多能采購多少臺?
(3)在(2)的條件下,超市銷售完這30臺電風(fēng)扇能否實現(xiàn)利潤為1400元的目標?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com