【題目】如圖,點(diǎn)A,B的坐標(biāo)分別為(1,4)和(4,4),拋物線y=a(x+m)2+n的頂點(diǎn)在線段AB上,與x軸交于C,D兩點(diǎn)(C在D的左側(cè)),點(diǎn)C的橫坐標(biāo)最小值為﹣3,則點(diǎn)D的橫坐標(biāo)的最大值為

【答案】8
【解析】解:當(dāng)點(diǎn)C橫坐標(biāo)為﹣3時(shí),拋物線頂點(diǎn)為A(1,4),對(duì)稱軸為x=1,此時(shí)D點(diǎn)橫坐標(biāo)為5,則CD=8; 當(dāng)拋物線頂點(diǎn)為B(4,4)時(shí),拋物線對(duì)稱軸為x=4,且CD=8,故C(0,0),D(8,0);
由于此時(shí)D點(diǎn)橫坐標(biāo)最大,
所以點(diǎn)D的橫坐標(biāo)最大值為8,
故答案為:8.
當(dāng)C點(diǎn)橫坐標(biāo)最小時(shí),拋物線頂點(diǎn)必為A(1,4),根據(jù)此時(shí)拋物線的對(duì)稱軸,可判斷出CD間的距離;當(dāng)D點(diǎn)橫坐標(biāo)最大時(shí),拋物線頂點(diǎn)為B(4,4),再根據(jù)此時(shí)拋物線的對(duì)稱軸及CD的長(zhǎng),可判斷出D點(diǎn)橫坐標(biāo)最大值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,線段AB經(jīng)過(guò)平移得到線段A′B′,其中點(diǎn)A,B的對(duì)應(yīng)點(diǎn)分別為點(diǎn)A′,B′,這四個(gè)點(diǎn)都在格點(diǎn)上,則這四個(gè)點(diǎn)組成的四邊形ABB′A′的面積是( )

A.4
B.6
C.9
D.13

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某旅游風(fēng)景區(qū)出售一種紀(jì)念品,該紀(jì)念品的成本為12元/個(gè),這種紀(jì)念品的銷售價(jià)格為x(元/個(gè))與每天的銷售數(shù)量y(個(gè))之間的函數(shù)關(guān)系如圖所示.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)銷售價(jià)格定為多少時(shí),每天可以獲得最大利潤(rùn)?并求出最大利潤(rùn).
(3)“十一”期間,游客數(shù)量大幅增加,若按八折促銷該紀(jì)念品,預(yù)計(jì)每天的銷售數(shù)量可增加200%,為獲得最大利潤(rùn),“十一”假期該紀(jì)念品打八折后售價(jià)為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣4,3)、B(﹣3,1)、C(﹣1,3).

(1)請(qǐng)按下列要求畫圖:
①將△ABC先向右平移4個(gè)單位長(zhǎng)度、再向上平移2個(gè)單位長(zhǎng)度,得到△A1B1C1 , 畫出△A1B1C1;
②△A2B2C2與△ABC關(guān)于原點(diǎn)O成中心對(duì)稱,畫出△A2B2C2
(2)在(1)中所得的△A1B1C1和△A2B2C2關(guān)于點(diǎn)M成中心對(duì)稱,請(qǐng)直接寫出對(duì)稱中心M點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,點(diǎn)O是△ABC的內(nèi)心,連接OB、OC,過(guò)點(diǎn)O作EF∥BC分別交AB、AC于點(diǎn)E、F,已知BC=a (a是常數(shù)),設(shè)△ABC的周長(zhǎng)為y,△AEF的周長(zhǎng)為x,在下列圖象中,大致表示y與x之間的函數(shù)關(guān)系的是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l:y1=2x+4,與y軸交于點(diǎn)A,與x軸交于點(diǎn)B,反比例函數(shù)y2= 與直線l交于點(diǎn)C,且AB=2AC.
(1)求反比例函數(shù)的解析式;
(2)根據(jù)函數(shù)圖象,直接寫出0<y1<y2的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l:y1=2x+4,與y軸交于點(diǎn)A,與x軸交于點(diǎn)B,反比例函數(shù)y2= 與直線l交于點(diǎn)C,且AB=2AC.
(1)求反比例函數(shù)的解析式;
(2)根據(jù)函數(shù)圖象,直接寫出0<y1<y2的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O為坐標(biāo)原點(diǎn),四邊形OABC為矩形,A(10,0),C(0,8),點(diǎn)P在邊BC上以每秒1個(gè)單位長(zhǎng)的速度由點(diǎn)C向點(diǎn)B運(yùn)動(dòng),同時(shí)點(diǎn)Q在邊AB上以每秒a個(gè)單位長(zhǎng)的速度由點(diǎn)A向點(diǎn)B運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒(t>0).

(1)若反比例函數(shù)y= 圖象經(jīng)過(guò)P點(diǎn)、Q點(diǎn),求a的值;
(2)若OQ垂直平分AP,求a的值;
(3)當(dāng)Q點(diǎn)運(yùn)動(dòng)到AB中點(diǎn)時(shí),是否存在a使△OPQ為直角三角形?若存在,求出a的值,若不存在請(qǐng)說(shuō)明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),E是正方形ABCD的邊BC上的一個(gè)點(diǎn)(E與B、C兩點(diǎn)不重合),過(guò)點(diǎn)E作射線EP⊥AE,在射線EP上截取線段EF,使得EF=AE;過(guò)點(diǎn)F作FG⊥BC交BC的延長(zhǎng)線于點(diǎn)G.

(1)求證:FG=BE;
(2)連接CF,如圖(2),求證:CF平分∠DCG;
(3)當(dāng) = 時(shí),求sin∠CFE的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案