⊙O1和⊙O2的半徑分別為20和15,它們相交于A,B兩點(diǎn),線段AB=24,則兩圓的圓心距O1O2=
25或7
25或7
分析:如圖,連接AO1,AO2,由勾股定理可以分別求出O1P和O2P,就可以求出結(jié)論.
解答:解:連接AO1,AO2
∴AO1,=20,AO2=15.
∵AB=24,
∴AP=12,∠APO1=∠APO2=90°.
在Rt△APO1和Rt△APO2中,由勾股定理,得
PO1=
400-144
=16,PO2=
225-144
=9,
∴O1O2=16+9=25.
O1O2=16-9=7.
故答案為:25或7.
點(diǎn)評(píng):本題考查了相交弦定理的運(yùn)用,勾股定理的運(yùn)用,解答時(shí)靈活作出輔助線運(yùn)用勾股定理是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、如圖,⊙O1和⊙O2的半徑為2和3,連接O1O2,交⊙O2于點(diǎn)P,O1O2=7,若將⊙O1繞點(diǎn)P按順時(shí)針方向以30°/秒的速度旋轉(zhuǎn)一周,請(qǐng)寫出⊙O1與⊙O2相切時(shí)的旋轉(zhuǎn)時(shí)間為
3或6或9
秒.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知⊙O1和⊙O2的半徑分別是一元二次方程x2-2x+
89
=0
的兩根,且O1O2=1,則⊙O1和⊙O2的位置關(guān)系是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若⊙O1和⊙O2的半徑分別為1cm和3cm,且O1O2=
5
cm,則⊙O1和⊙O2的位置關(guān)系是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知⊙O1和⊙O2的半徑分別為R1和R2,且R1=2,O1O2=7,且⊙O1與⊙O2相切,則R2的取值是
5或9
5或9

查看答案和解析>>

同步練習(xí)冊(cè)答案