【題目】如圖,平行四邊形ABCD中,對(duì)角線ACBD相交于點(diǎn)O,E、FAC上的兩點(diǎn),當(dāng)EF滿足下列哪個(gè)條件時(shí),四邊形DEBF不一定是平行四邊形( 。

A.ADE=CBFB.ABE=CDFC.DE=BFD.OE=OF

【答案】C

【解析】

根據(jù)平行四邊形的性質(zhì),以及平行四邊形的判定定理即可作出判斷.

A、在平行四邊形ABCD中,

AO=CO,DO=BO,ADBC,AD=BC,

∴∠DAE=BCF

若∠ADE=CBF,

ADECBF中,

,

∴△ADE≌△CBF,

AE=CF,

OE=OF,

∴四邊形DEBF是平行四邊形;

B、若∠ABE=CDF,

ABECDF中,

,

∴△ABE≌△CDF

AE=CF,

AO=CO,

OE=OF

OD=OB,

∴四邊形DEBF是平行四邊形;

C、若DEAC不垂直,則滿足AC上一定有一點(diǎn)M使DM=DE,同理有一點(diǎn)N使BF=BN,則四邊形DEBF不一定是平行四邊形,則選項(xiàng)錯(cuò)誤;

D、若OE=OF

OD=OB,

∴四邊形DEBF是平行四邊形;

故選C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,己知正方形ABCD的邊長(zhǎng)為4, P是對(duì)角線BD上一點(diǎn),PE⊥BC于點(diǎn)E, PF⊥CD于點(diǎn)F,連接AP, EF.給出下列結(jié)論:①PD=EC:②四邊形PECF的周長(zhǎng)為8;③△APD一定是等腰三角形:④AP=EF;⑤EF的最小值為;⑥AP⊥EF.其中正確結(jié)論的序號(hào)為(

A. ①②④⑤⑥B. ①②④⑤

C. ②④⑤D. ②④⑤⑥

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直線L上依次擺放著七個(gè)正方形,已知斜放置的三個(gè)正方形的面積分別為1、2、3,正放置的四個(gè)正方形的面積依次是S1、S2、S3、S4S1+2S2+2S3+S4=(

A. 5 B. 4 C. 6 D. 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市有著豐富的土地資源,適宜種植玉米,某企業(yè)已收購(gòu)玉米525噸,根據(jù)市場(chǎng)信息,將玉米直接銷售,每噸可獲利100元;如果對(duì)玉米進(jìn)行粗加工,每天可加工8噸,每噸可獲利1000元;如果對(duì)玉米進(jìn)行精加工,每天可加工05噸,每噸可獲利5000元.由于受條件限制,在同一天中只能采取一種加工方式,并且必須在30天內(nèi)將這批玉米全部銷售,為此,研究了兩種方案.

1)方案一:將玉米全部粗加工后銷售,則可獲利 元;

2)方案二:30天時(shí)間都進(jìn)行精加工,未來(lái)得及加工的玉米,在市場(chǎng)上直接銷售,則可獲利 元;

3)問是否存在第三種方案,將部分玉米精加工,其余玉米粗加工,并恰好在30天內(nèi)完成?若存在,請(qǐng)求銷售后所獲利潤(rùn):若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABCD中,過(guò)點(diǎn)DDE⊥AB于點(diǎn)E,點(diǎn)FCD上,CF=AE,連接BF,AF.

(1)求證:四邊形BFDE是矩形;

(2)AF平分∠BAD,且AE=3,DE=4,求tan∠BAF的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,△ABC的位置如圖所示(每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形).

(1)將△ABC沿x軸方向向左平移6個(gè)單位,畫出平移后得到的△A1B1C1;

(2)將△ABC繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△AB2C2,并直接寫出點(diǎn)B2、C2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,O是對(duì)角線ACBD的交點(diǎn),MBC邊上的動(dòng)點(diǎn)(點(diǎn)M不與BC重合),CNDM,CNAB交于點(diǎn)N,連接OM、ONMN.下列四個(gè)結(jié)論:①△CNB≌△DMC;②△CON≌△DOM;③AN2CM2MN2;④若AB2,則SOMN的最小值是.其中正確結(jié)論的個(gè)數(shù)是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解同學(xué)們每月零花錢的數(shù)額,校園小記者隨機(jī)調(diào)查了本校部分同學(xué),根據(jù)調(diào)查結(jié)果,繪制出了如下兩個(gè)尚不完整的統(tǒng)計(jì)圖表.

調(diào)查結(jié)果統(tǒng)計(jì)表

組別

分組(單位:元)

人數(shù)

A

0≤x<30

4

B

30≤x<60

16

C

60≤x<90

a

D

90≤x<120

b

E

x≥120

2

請(qǐng)根據(jù)以上圖表,解答下列問題:

(1)填空:這次被調(diào)查的同學(xué)共有__人,a+b=__,m=___

(2)求扇形統(tǒng)計(jì)圖中扇形C的圓心角度數(shù);

(3)該校共有學(xué)生1000人,請(qǐng)估計(jì)每月零花錢的數(shù)額x60≤x<120范圍的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,PB與⊙O相切于點(diǎn)B,過(guò)點(diǎn)BOP的垂線BA,垂足為C,交⊙O于點(diǎn)A,連結(jié)PA,AO,AO的延長(zhǎng)線交⊙O于點(diǎn)E,與PB的延長(zhǎng)線交于點(diǎn)D

1)求證:PA是⊙O的切線;

2)若tanBAD=,且OC=4,求BD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案