【題目】如圖1,圓規(guī)兩腳形成的角α稱為圓規(guī)的張角.一個圓規(guī)兩腳均為12cm,最大張角150°,你能否畫出一個半徑為20cm的圓?請借助圖2說明理由.(參考數(shù)據(jù):sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)

【答案】解:∵△ABC是等腰三角形,∠A=150°, ∴∠B=∠C= =15°,
過點A作AD⊥BC于點D,
∴BD=ABcos∠B≈12×0.97≈11.6cm,∴BC≈23.2>20cm,
∴能畫出一個半徑為20cm的圓.

【解析】先根據(jù)等腰三角形的性質(zhì)求出∠B的度數(shù),過點A作AD⊥BC于點D,根據(jù)銳角三角函數(shù)的定義可求出BD的長,故可得出結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了了解學(xué)生孝敬父母的情況(選項:A.為父母洗一次腳;B.幫父母做一次家務(wù);C.給父母買一件禮物;D.其它),在全校范圍內(nèi)隨機(jī)抽取了若干名學(xué)生進(jìn)行調(diào)查,得到如圖表(部分信息未給出):學(xué)生孝敬父母情況統(tǒng)計表:

選項

頻數(shù)

頻率

A

m

0.15

B

60

p

C

n

0.4

D

48

0.2

根據(jù)以上信息解答下列問題:

(1)這次被調(diào)查的學(xué)生有多少人?
(2)求表中m,n,p的值,并補全條形統(tǒng)計圖.
(3)該校有1600名學(xué)生,估計該校全體學(xué)生中選擇B選項的有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線y=ax2+bx+c(a≠0)過A(0,2),B(4,3),C三點,其中點C在直線x=2上,且點C到拋物線的對稱軸的距離等于1,則拋物線的函數(shù)解析式為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將邊長為2的正方形OABC如圖放置,O為原點.若∠α=15°,則點B的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,透明的圓柱形容器(容器厚度忽略不計)的高為12cm,底面周長為10cm,在容器內(nèi)壁離容器底部3cm的點B處有一飯粒,此時一只螞蟻正好在容器外壁,且離容器上沿3cm的點A處,則螞蟻吃到飯粒需爬行的最短路徑是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x﹣交x軸于點A,交y軸于點C,直線y=x﹣5交x軸于點B,在平面內(nèi)有一點E,其坐標(biāo)為(4,),連接CB,點K是線段CB的中點,另有兩點M,N,其坐標(biāo)分別為(a,0),(a+1,0).將K點先向左平移 個單位,再向上平移個單位得K′,當(dāng)以K′,E,M,N四點為頂點的四邊形周長最短時,a的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,已知y= (x>0)圖象上一點P,PA⊥x軸于點A(a,0),點B坐標(biāo)為(0,b)(b>0),動點M是y軸正半軸上B點上方的點,動點N在射線AP上,過點B作AB的垂線,交射線AP于點D,交直線MN于點Q連接AQ,取AQ的中點為C.

(1)如圖2,連接BP,求△PAB的面積;
(2)當(dāng)點Q在線段BD上時,若四邊形BQNC是菱形,面積為2 ,求此時P點的坐標(biāo);
(3)當(dāng)點Q在射線BD上時,且a=3,b=1,若以點B,C,N,Q為頂點的四邊形是平行四邊形,求這個平行四邊形的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O為坐標(biāo)原點,四邊形OABC為矩形,A(10,0),C(0,8),點P在邊BC上以每秒1個單位長的速度由點C向點B運動,同時點Q在邊AB上以每秒a個單位長的速度由點A向點B運動,運動時間為t秒(t>0).

(1)若反比例函數(shù)y= 圖象經(jīng)過P點、Q點,求a的值;
(2)若OQ垂直平分AP,求a的值;
(3)當(dāng)Q點運動到AB中點時,是否存在a使△OPQ為直角三角形?若存在,求出a的值,若不存在請說明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個矩形的一邊是另一邊的兩倍,則稱這個矩形為方形,如圖1,矩形ABCD中,BC=2AB,則稱ABCD為方形.

(1)設(shè)a,b是方形的一組鄰邊長,寫出a,b的值(一組即可).
(2)在△ABC中,將AB,AC分別五等分,連結(jié)兩邊對應(yīng)的等分點,以這些連結(jié)線為一邊作矩形,使這些矩形的邊B1C1 , B2C2 , B3C3 , B4C4的對邊分別在B2C2 , B3C3 , B4C4 , BC上,如圖2所示.
①若BC=25,BC邊上的高為20,判斷以B1C1為一邊的矩形是不是方形?為什么?
②若以B3C3為一邊的矩形為方形,求BC與BC邊上的高之比.

查看答案和解析>>

同步練習(xí)冊答案