【題目】2個信封,每個信封內(nèi)各裝有四張卡片,其中一個信封內(nèi)的三張卡片上分別寫有1、23、三個數(shù),另一個信封內(nèi)的三張卡片分別寫有4、5、6三個數(shù),甲、乙兩人商定了一個游戲,規(guī)則是:從這兩個信封中各隨機(jī)抽取一張卡片,然后把卡片上的兩個數(shù)相乘,如果得到的積大于10,則甲獲勝,否則乙獲勝.

1)請你通過列表(或畫樹狀圖)計算甲獲勝的概率.

2)你認(rèn)為這個游戲公平嗎?為什么?

【答案】(1);(2)游戲不公平.

【解析】

1)畫樹狀圖展示所有9種等可能的結(jié)果數(shù),積大于104種,然后根據(jù)概率的概念計算出甲獲勝的概率;

2)甲獲勝的概率=,乙獲勝的概率=,由此判斷這個游戲不公平.

解:(1)樹狀圖如下:

共有9種等可能的結(jié)果數(shù),積大于104種,

∴甲獲勝的概率=;

2)這個游戲不公平.理由如下:

甲獲勝的概率=,乙獲勝的概率=

∴甲獲勝的概率<乙獲勝的概率,

∴這個游戲不公平.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,對角線AC,BD交于點(diǎn)OAEBCCB延長線于E,CFAEAD延長線于點(diǎn)F

1)求證:四邊形AECF是矩形;

2)連接OE,若AE=4,AD=5,求OE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC為矩形,OA=3,OC=4,P為直線AB上一動點(diǎn),將直線OP繞點(diǎn)P逆時針方向旋轉(zhuǎn)90交直線BC于點(diǎn)Q.

(1)當(dāng)點(diǎn)P在線段AB上運(yùn)動(不與A,B重合)時,求證:OABQ=APBP;

(2)(1)成立的條件下,設(shè)點(diǎn)P的橫坐標(biāo)為m,線段CQ的長度為,求出關(guān)于m的函數(shù)解析式,并判斷是否存在最小值?若存在,請求出最小值;若不存在,請說明理由;

(3)直線AB上是否存在點(diǎn)P,使POQ為等腰三角形?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,E、FG、H分別是邊AB、BC、CD、DA的中點(diǎn),則下列說法正確的是( )

A.若四邊形EFGH是平行四邊形,則ACBD相等

B.若四邊形EFGH是正方形,則ACBD互相垂直且相等

C.ACBD,則四邊形EFGH是矩形

D.ACBD,則四邊形EFGH是菱形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,矩形ABCD中,AD6,DC7,菱形EFGH的三個頂點(diǎn)E,GH分別在矩形ABCD的邊AB,CD,DA上,AH2,連接CF

1)若DG2,求證四邊形EFGH為正方形;

2)若DG6,求FCG的面積;

3)當(dāng)DG為何值時,FCG的面積最小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△ABC中,∠ABC=45°,BC=7cmAB=cm點(diǎn)P從點(diǎn)B出發(fā)沿BC方向向點(diǎn)C運(yùn)動,當(dāng)點(diǎn)P到點(diǎn)C時,停止運(yùn)動

1)如圖2,過點(diǎn)PPQBC,PQAB于點(diǎn)Q,以PQ為一邊向右側(cè)作矩形PQRS,若點(diǎn)R恰好在邊AC上,且滿足QR=2PQ.BP得值.

(2)以點(diǎn)P為圓心,BP為半徑作圓.

①如圖3,當(dāng)⊙P與邊AC相切于點(diǎn)E時,求BP的值;

②隨著BP的變化,⊙P與△ABC三邊的公共點(diǎn)的個數(shù)也在變化,請直接寫出公共點(diǎn)個數(shù)與對應(yīng)的BP的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了計算湖中小島上涼亭P到岸邊公路l的距離,某數(shù)學(xué)興趣小組在公路l上的點(diǎn)A處,測得涼亭P在北偏東60°的方向上;從A處向正東方向行走200米,到達(dá)公路l上的點(diǎn)B處,再次測得涼亭P在北偏東45°的方向上,如圖所示.求涼亭P到公路l的距離.(結(jié)果保留整數(shù),參考數(shù)據(jù):≈1.414,≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,矩形的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,頂點(diǎn)分別在坐標(biāo)軸的正半軸上, ,點(diǎn)在直線,直線與折線有公共點(diǎn).

1)點(diǎn)的坐標(biāo)是 ;

2)若直線經(jīng)過點(diǎn),求直線的解析式;

3)對于一次函數(shù),當(dāng)的增大而減小時,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,四邊形ABCD中,對角線AC平分∠DCB,且ADABCDCB

1)求證:∠B+D180°;

2)如圖2,在AC上取一點(diǎn)E,使得BECD,且BECE,點(diǎn)F在線段BC上,連接AF,且ABAF,求證:AECF;

3)如圖3,在(2)的條件下,若BEAF交于點(diǎn)G,BFAB27,求tanBGF的值.

查看答案和解析>>

同步練習(xí)冊答案