【題目】點C是直線l1上一點,在同一平面內,把一個等腰直角三角板ABC任意擺放,其中直角頂點C與點C重合,過點A作直線l2⊥l1,垂足為點M,過點B作l3⊥l1,垂足為點N
(1)當直線l2,l3位于點C的異側時,如圖1,線段BN,AM與MN之間的數(shù)量關系 (不必說明理由);
(2)當直線l2,l3位于點C的右側時,如圖2,判斷線段BN,AM與MN之間的數(shù)量關系,并說明理由;
(3)當直線l2,l3位于點C的左側時,如圖3,請你補全圖形,并直接寫出線段BN,AM與MN之間的數(shù)量關系.
【答案】(1)MN=AM+BN;(2)MN=BN-AM,見解析;(3)見解析,MN=AM﹣BN.
【解析】
(1)利用AAS定理證明△NBC≌△MCA,根據(jù)全等三角形的性質、結合圖形解答;
(2)根據(jù)直角三角形的性質得到∠CAM=∠BCN,證明△NBC≌△MCA,根據(jù)全等三角形的性質、結合圖形解答;
(3)根據(jù)題意畫出圖形,仿照(2)的作法證明.
(1)MN=AM+BN
(2)MN=BN-AM
理由如下:如圖2.
因為l2⊥l1,l3⊥l1
所以∠BNC=∠CMA=90°
所以∠ACM+∠CAM=90°
因為∠ACB=90°
所以∠ACM+∠BCN=90°
所以∠CAM=∠BCN
又因為CA=CB
所以△CBN≌△ACM(AAS)
所以BN=CM,NC=AM
所以MN=CM﹣CN=BN﹣AM
(3)補全圖形,如圖3
結論:MN=AM﹣BN
由(2)得,△CBN≌△ACM(AAS).
∴BN=CM,NC=AM
結論:MN=CN-CM=AM-BN.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某長方形廣場的四個角都有一個半徑相同的四分之一圓形的草地,若圓形的半徑為x米,長方形長為a米,寬為b米
(1)分別用代數(shù)式表示草地和空地的面積;
(2)若長方形長為300米,寬為200米,圓形的半徑為10米,求廣場空地的面積(計算結果保留到整數(shù))
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線與直線交于A(a,8)B兩點,點P是拋物線上A、B之間的一個動點,過點P分別作軸、軸的平行線與直線AB交于點C和點E.
(1)求拋物線的解析式;
(2)若C 為AB中點,求PC的長;
(3)如圖,以PC,PE為邊構造矩形PCDE,設點D的坐標為(m,n),請求出m,n之間的關系式。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖表示甲騎摩托車和乙駕駛汽車沿相同的路線行駛90千米,由A地到B地時,行駛的路程y(千米)與經過的時間x(小時)之間的關系。請根據(jù)圖象填空:
(1)摩托車的速度為_____千米/小時;汽車的速度為_____千米/小時;
(2)汽車比摩托車早_____小時到達B地。
(3)在汽車出發(fā)后幾小時,汽車和摩托車相遇?說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB=AE,∠B=∠E,BC=ED,點F是CD的中點,
(1)AC與AD相等嗎?為什么?
(2)AF與CD的位置關系如何?說明理由;
(3)若P為AF上的一點,那么PC與PD相等嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,頂點M在y軸上的拋物線與直線y=x+1相交于A、B兩點,且點A在x軸上,點B的橫坐標為2,連結AM、BM.
(1)求拋物線的函數(shù)關系式;
(2)判斷△ABM的形狀,并說明理由;
(3)把拋物線與直線y=x的交點稱為拋物線的不動點.若將(1)中拋物線平移,使其頂點為(m,2m),當m滿足什么條件時,平移后的拋物線總有不動點.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CD,△ACB的頂點A在△ECD的斜邊DE上
(1)求證:AE2+AD2=2AC2;
(2)如圖2,若AE=2,AC=2,點F是AD的中點,直接寫出CF的長是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com