【題目】十八大報(bào)告指出:“建設(shè)生態(tài)文明,是關(guān)系人民福祉、關(guān)乎民族未來的長遠(yuǎn)大計(jì)”,這些年黨和政府在生態(tài)文明的發(fā)展進(jìn)程上持續(xù)推進(jìn),在“十一五”期間,中國減少二氧化碳排放1 460 000 000噸,贏得國際社會廣泛贊譽(yù).將1 460 000 000用科學(xué)記數(shù)法表示為( )
A.146×107
B.1.46×107
C.1.46×109
D.1.46×1010

【答案】C
【解析】解:1 460 000 000=1.46×109
故選C.
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值是易錯點(diǎn),由于1 460 000 000有10位,所以可以確定n=10﹣1=9.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計(jì)算正確的是( )
A.2a+3b=6ab
B.19a2b2﹣9ab=10ab
C.﹣2x2﹣2x2=0
D.5y﹣3y=2y

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),已知A(3,0),且M(1,)是拋物線上另一點(diǎn).

(1)求a、b的值;

(2)連結(jié)AC,設(shè)點(diǎn)P是y軸上任一點(diǎn),若以P、A、C三點(diǎn)為頂點(diǎn)的三角形是等腰三角形,求P點(diǎn)的坐標(biāo);

(3)若點(diǎn)N是x軸正半軸上且在拋物線內(nèi)的一動點(diǎn)(不與O、A重合),過點(diǎn)N作NHAC交拋物線的對稱軸于H點(diǎn).設(shè)ON=t,ONH的面積為S,求S與t之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某沿海開放城市A接到臺風(fēng)警報(bào),在該市正南方向100km的B處有一臺風(fēng)中心,沿BC方向以20km/h的速度向D移動,已知城市A到BC的距離AD=60km,那么臺風(fēng)中心經(jīng)過多長時間從B點(diǎn)移到D點(diǎn)?如果在距臺風(fēng)中心30km的圓形區(qū)域內(nèi)都將有受到臺風(fēng)的破壞的危險,正在D點(diǎn)休閑的游人在接到臺風(fēng)警報(bào)后的幾小時內(nèi)撤離才可脫離危險?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線(a0)的圖象的頂點(diǎn)坐標(biāo)是(2,1),并且經(jīng)過點(diǎn)(4,2),直線與拋物線交于B,D兩點(diǎn),以BD為直徑作圓,圓心為點(diǎn)C,圓C與直線m交于對稱軸右側(cè)的點(diǎn)M(t,1),直線m上每一點(diǎn)的縱坐標(biāo)都等于1.

(1)求拋物線的解析式;

(2)證明:圓C與x軸相切;

(3)過點(diǎn)B作BEm,垂足為E,再過點(diǎn)D作DFm,垂足為F,求MF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校數(shù)學(xué)興趣小組在一次數(shù)學(xué)課外活動中,隨機(jī)抽查該校10名同學(xué)參加今年初中學(xué)業(yè)水平考試的體育成績,得到結(jié)果如下表所示:

下列說法正確的是(

A.這10名同學(xué)體育成績的中位數(shù)為38分

B.這10名同學(xué)體育成績的平均數(shù)為38分

C.這10名同學(xué)體育成績的眾數(shù)為39分

D.這10名同學(xué)體育成績的方差為2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a>b且a+b=0,則(
A.a<0
B.a>0
C.b≤0
D.b>0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】化簡9a5a的結(jié)果是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在O中,直徑CD垂直于不過圓心O的弦AB,垂足為點(diǎn)N,連接AC,點(diǎn)E在AB上,且AE=CE

(1)求證:AC2=AEAB;

(2)過點(diǎn)B作O的切線交EC的延長線于點(diǎn)P,試判斷PB與PE是否相等,并說明理由;

(3)設(shè)O半徑為4,點(diǎn)N為OC中點(diǎn),點(diǎn)Q在O上,求線段PQ的最小值.

查看答案和解析>>

同步練習(xí)冊答案