【題目】給出下列命題:
①三角形的三條高相交于一點(diǎn);
②如果一組數(shù)據(jù)中有一個(gè)數(shù)據(jù)變動(dòng),那么它的平均數(shù)、眾數(shù)、中位數(shù)都隨之變動(dòng);
③如果不等式的解集為,那么;
④如果三角形的一個(gè)外角等于與它相鄰的一個(gè)內(nèi)角則這個(gè)三角形是直角三角形;
其中正確的命題有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
【答案】B
【解析】
根據(jù)三角形的高、平均數(shù)、眾數(shù)、中位數(shù)的定義、不等式的基本性質(zhì)和鄰補(bǔ)角的定義逐一判斷即可.
①鈍角三角形的三條高不相交(三條高所在的直線交于一點(diǎn)),故錯(cuò)誤;
②如果一組數(shù)據(jù)中有一個(gè)數(shù)據(jù)變動(dòng),那么它的平均數(shù)會(huì)隨之變動(dòng),但眾數(shù)和中位數(shù)不一定變動(dòng),故錯(cuò)誤;
③如果不等式的解集為,可得m-3<0,那么,故正確;
④如果三角形的一個(gè)外角等于與它相鄰的一個(gè)內(nèi)角,根據(jù)鄰補(bǔ)角的定義可得這個(gè)外角和與它相鄰的一個(gè)內(nèi)角之和為180°,
∴三角形的這個(gè)內(nèi)角為180°÷2=90°
則這個(gè)三角形是直角三角形,故正確.
綜上:正確的有2個(gè)
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠AOB=90°,點(diǎn)A繞點(diǎn)O順時(shí)針旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)A1落在射線OB上,點(diǎn)A繞點(diǎn)A1順時(shí)針旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)A2落在射線OB上,點(diǎn)A繞點(diǎn)A2順時(shí)針旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)A3落在射線OB上,…,連接AA1 , AA2 , AA3…,依此作法,則∠AAnAn+1等于度.(用含n的代數(shù)式表示,n為正整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】完成下面的證明:
已知:如圖,點(diǎn) D,E,F 分別在線段 AB,BC,AC 上,連接 DE、EF,DM 平分∠ADE 交 EF 于點(diǎn) M,∠1+∠2=180°. 求證:∠B =∠BED.
證明:∵∠1+∠2=180°(已知),
又∵∠1+∠BEM=180°(平角定義),
∴∠2=∠BEM( ),
∴DM∥ ( ).
∴∠ADM =∠B( ),
∠MDE =∠BED( ).
又∵DM 平分∠ADE (已知),
∴∠ADM =∠MDE (角平分線定義).
∴∠B =∠BED( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,有點(diǎn) A(a﹣1,3),B(a+2,2a﹣1)
(1)若線段AB∥x軸,求點(diǎn)A、B的坐標(biāo);
(2)當(dāng)點(diǎn)B到x軸的距離是點(diǎn)A到y軸的距離2倍時(shí),求點(diǎn)B的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】今年西寧市高中招生體育考試測(cè)試管理系統(tǒng)的運(yùn)行,將測(cè)試完進(jìn)行換算統(tǒng)分改為計(jì)算機(jī)自動(dòng)生成,現(xiàn)場(chǎng)公布成績(jī),降低了誤差,提高了透明度,保證了公平.考前張老師為了解全市初三男生考試項(xiàng)目的選擇情況(每人限選一項(xiàng)),對(duì)全市部分初三男生進(jìn)行了調(diào)查,將調(diào)查結(jié)果分成五類:A、實(shí)心球(2kg);B、立定跳遠(yuǎn);C、50米跑;D、半場(chǎng)運(yùn)球;E、其它.并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問(wèn)題:
(1)將上面的條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)假定全市初三畢業(yè)學(xué)生中有5500名男生,試估計(jì)全市初三男生中選50米跑的人數(shù)有多少人?
(3)甲、乙兩名初三男生在上述選擇率較高的三個(gè)項(xiàng)目:B、立定跳遠(yuǎn);C、50米跑;D、半場(chǎng)運(yùn)球中各選一項(xiàng),同時(shí)選擇半場(chǎng)運(yùn)球、立定跳遠(yuǎn)的概率是多少?請(qǐng)用列表法或畫樹形圖的方法加以說(shuō)明并列出所有等可能的結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】探究與發(fā)現(xiàn):
探究一:我們知道,三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和.那么,三角形的一個(gè)內(nèi)角與它不相鄰的兩個(gè)外角的和之間存在何種數(shù)量關(guān)系呢?
已知:如圖1,∠FDC與∠ECD分別為△ADC的兩個(gè)外角,試探究∠A與∠FDC+∠ECD的數(shù)量關(guān)系.
探究二:三角形的一個(gè)內(nèi)角與另兩個(gè)內(nèi)角的平分線所夾的鈍角之間有何種關(guān)系?
已知:如圖2,在△ADC中,DP、CP分別平分∠ADC和∠ACD,試探究∠P與∠A的數(shù)量關(guān)系.
探究三:若將△ADC改為任意四邊形ABCD呢?
已知:如圖3,在四邊形ABCD中,DP、CP分別平分∠ADC和∠BCD,試?yán)蒙鲜鼋Y(jié)論探究∠P與∠A+∠B的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰三角形ABC的底邊BC長(zhǎng)為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于E,F點(diǎn)若點(diǎn)D為BC邊的中點(diǎn),點(diǎn)M為線段EF上一動(dòng)點(diǎn),則周長(zhǎng)的最小值為
A. 6 B. 8 C. 10 D. 12
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,AB=AC=10cm,BC=8cm,點(diǎn)D為AB的中點(diǎn).
(1)如果點(diǎn)P在線段BC上以3cm/s的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).
①若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1s后,△BPD與△CQP是否全等,請(qǐng)說(shuō)明理由;
②若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD與△CQP全等?
(2)若點(diǎn)Q以②中的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來(lái)的運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿△ABC三邊運(yùn)動(dòng),求經(jīng)過(guò)多長(zhǎng)時(shí)間點(diǎn)P與點(diǎn)Q第一次在△ABC的哪條邊上相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖,∠MON=80°,點(diǎn)A、B分別在射線OM、ON上移動(dòng),△AOB的角平分線AC與BD交于點(diǎn)P.試問(wèn):隨著點(diǎn)A、B位置的變化,∠APB的大小是否會(huì)變化?若保持不變,請(qǐng)求出∠APB的度數(shù);若發(fā)生變化,求出變化范圍.
(2)兩條相交的直線OX、OY,使∠XOY=n,在射線OX、OY上分別再任意取A、B兩點(diǎn),作∠ABY的平分線BD,BD的反向延長(zhǎng)線交∠OAB的平分線于點(diǎn)C,隨著點(diǎn)A、B位置的變化,∠C的大小是否會(huì)變化?若保持不變,請(qǐng)求出∠C的度數(shù);若發(fā)生變化,求出變化范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com