已知:如圖,在平面直角坐標(biāo)系xOy中,矩形OABC的邊OA在y 軸的正半軸上,OC在x軸的正半軸上,OA=2,OC=3,過原點(diǎn)O作∠AOC的平分線交AB于點(diǎn)D,連接DC,過點(diǎn)D作DE⊥DC,交OA 于點(diǎn)E。
(1)求過點(diǎn)E、D、C的拋物線的解析式;
(2)將∠EDC繞點(diǎn)D按順時針方向旋轉(zhuǎn)后,角的一邊與 y軸的正半軸交于點(diǎn)F,另一邊與線段OC交于點(diǎn) G,如果DF與(1)中的拋物線交于另一點(diǎn)M,點(diǎn)M 的橫坐標(biāo)為,那么EF=2GO是否成立?若成立,請給予證明;若不成立,請說明理由;
(3)對于(2)中的點(diǎn)G,在位于第一象限內(nèi)的該拋物線上是否存在點(diǎn)Q,使得直線GQ與AB的交點(diǎn)P與點(diǎn) C、G構(gòu)成的△PCG是等腰三角形?若存在,請求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由。
解:(1)∵OD平分∠AOC,
∴∠AOD=∠COD,
∵AB∥OC,
∴∠ADO=∠COD,
∴∠ADO=∠AOD,
∴AD=AO=2,
∴點(diǎn)D的坐標(biāo)為(2,2),
∵OA=2,OC=3,
∴BD=1,
∵DE⊥DC,
∴∠ADE+∠BDC=90°,
∴∠ADE=∠BCD,
∵∠DAE=∠CBD=90°,AD=BC=2,
∴△ADE∽△BCD,
∴AE=BD=1,
∴點(diǎn)E的坐標(biāo)為(0,1),
∵OC=3,
∴點(diǎn)C的坐標(biāo)為(3,0),
設(shè)過點(diǎn)E、D、C的拋物線的解析式為y=ax2+bx+c(a≠0),
將E、D、C三點(diǎn)坐標(biāo)代入,得,解得
;
(2)EF=2OG成立,
證明:把代入,
∴點(diǎn)M的坐標(biāo)為,
設(shè)直線DM的解析式為y=kx+b(k≠0),
,解得
,
當(dāng)x=0時,y=3,
∴點(diǎn)F的坐標(biāo)為(0,3),
∴EF=2,
作DH⊥OC于H,
∵DH=AD,∠GHD=∠FAD=90°,∠GDH=∠FDA,
∴△FAD≌△GHD,
∴GH=AF=1,
∴DG=1,
∴EF=2OG;
(3)存在;
∵OG=1,
∴CG=2,
①當(dāng)PG=CG=2時,PG⊥OC,
∴點(diǎn)P的坐標(biāo)為(1,2),
∴把x=1代入,
∴點(diǎn)Q的坐標(biāo)為;
②當(dāng)PC=CG時,PC⊥OC,
∴點(diǎn)P就是點(diǎn)B,坐標(biāo)為(3,2),
設(shè)直線BG的解析式為y=kx+b(k≠0),得出,解得,
∴y=x-1,
∵點(diǎn)Q是直線BG與拋物線的交點(diǎn),
,
解得,
又∵點(diǎn)Q在第一象限,
∴點(diǎn)Q的坐標(biāo)為;
③當(dāng)PG=PC時,點(diǎn)P在CG的垂直平分線上,
∴點(diǎn)P就是點(diǎn)D,點(diǎn)D也是點(diǎn)Q,坐標(biāo)為(2,2),
∴綜上所述,點(diǎn)Q的坐標(biāo)為或(2,2)。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,直y=
3
2
x+b
與雙曲線y=
16
x
相交于第一象限內(nèi)的點(diǎn)A,AB、AC分別垂直于x軸、y軸,垂足分別為B、C,已知四邊形ABCD是正方形,求直線所對應(yīng)的一次函數(shù)的解析式以及它與x軸的交點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,原點(diǎn)O處有一乒乓球發(fā)射器向空中發(fā)射乒乓球,乒乓球飛行路線是一條拋物線,在地面上落點(diǎn)落在X軸上為點(diǎn)B.有人在線段OB上點(diǎn)C(靠點(diǎn)B一側(cè))豎直向上擺放無蓋的圓柱形桶,試圖讓乒乓球落入桶內(nèi).已知OB=4米,OC=3米,乒乓球飛行最大高度MN=5米,圓柱形桶的直徑為0.5,高為0.3米(乒乓球的體積和圓柱形桶的厚度忽略不計).
(1)求乒乓球飛行路線拋物線的解析式;
(2)如果豎直擺放5個圓柱形桶時,乒乓球能不能落入桶內(nèi)?
(3)當(dāng)豎直擺放圓柱形桶
8,9,10,11或12
8,9,10,11或12
個時,乒乓球可以落入桶內(nèi)?(直接寫出滿足條件的一個答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖1,在平面直角坐標(biāo)系內(nèi),直線l1:y=-x+4與坐標(biāo)軸分別相交于點(diǎn)A、B,與直線l2y=
13
x
相交于點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo);
(2)如圖1,平行于y軸的直線x=1交直線l1于點(diǎn)E,交直線l2于點(diǎn)D,平行于y軸的直x=a交直線l1于點(diǎn)M,交直線l2于點(diǎn)N,若MN=2ED,求a的值;
(3)如圖2,點(diǎn)P是第四象限內(nèi)一點(diǎn),且∠BPO=135°,連接AP,探究AP與BP之間的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆重慶萬州區(qū)巖口復(fù)興學(xué)校九年級下第一次月考數(shù)學(xué)試卷(帶解析) 題型:解答題

已知:直角梯形AOBC在平面直角坐標(biāo)系中的位置如圖,若AC∥OB,OC平分∠AOB,CB⊥x軸于B,點(diǎn)A坐標(biāo)為(3 ,4). 點(diǎn)P從原點(diǎn)O開始以2個單位/秒速度沿x軸正向運(yùn)動 ;同時,一條平行于x軸的直線從AC開始以1個單位/秒速度豎直向下運(yùn)動 ,交OA于點(diǎn)D,交OC于點(diǎn)M,交BC于點(diǎn)E. 當(dāng)點(diǎn)P到達(dá)點(diǎn)B時,直線也隨即停止運(yùn)動.

(1)求出點(diǎn)C的坐標(biāo);
(2)在這一運(yùn)動過程中, 四邊形OPEM是什么四邊形?請說明理由。若
用y表示四邊形OPEM的面積 ,直接寫出y關(guān)于t的函數(shù)關(guān)系式及t的
范圍;并求出當(dāng)四邊形OPEM的面積y的最大值?
(3)在整個運(yùn)動過程中,是否存在某個t值,使⊿MPB為等腰三角形?
若有,請求出所有滿足要求的t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年浙江省湖州市中考數(shù)學(xué)模擬試卷(十一)(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中,原點(diǎn)O處有一乒乓球發(fā)射器向空中發(fā)射乒乓球,乒乓球飛行路線是一條拋物線,在地面上落點(diǎn)落在X軸上為點(diǎn)B.有人在線段OB上點(diǎn)C(靠點(diǎn)B一側(cè))豎直向上擺放無蓋的圓柱形桶,試圖讓乒乓球落入桶內(nèi).已知OB=4米,OC=3米,乒乓球飛行最大高度MN=5米,圓柱形桶的直徑為0.5,高為0.3米(乒乓球的體積和圓柱形桶的厚度忽略不計).
(1)求乒乓球飛行路線拋物線的解析式;
(2)如果豎直擺放5個圓柱形桶時,乒乓球能不能落入桶內(nèi)?
(3)當(dāng)豎直擺放圓柱形桶______個時,乒乓球可以落入桶內(nèi)?(直接寫出滿足條件的一個答案)

查看答案和解析>>

同步練習(xí)冊答案