如圖所示,⊙O的直徑AB為10cm,弦AC為6cm,∠ACB的平分線交⊙O于D,求BC,AD,BD的長(zhǎng).

【答案】分析:根據(jù)直徑所對(duì)的角是90°,判斷出△ABC和△ABD是直角三角形,根據(jù)圓周角∠ACB的平分線交⊙O于D,判斷出△ADB為等腰直角三角形,然后根據(jù)勾股定理求出具體值.
解答:解:∵AB是直徑
∴∠ACB=∠ADB=90°
在Rt△ABC中,AB2=AC2+BC2,AB=10cm,AC=6cm
∴BC2=AB2-AC2=102-62=64
∴BC==8(cm)
又CD平分∠ACB

∴AD=BD
又在Rt△ABD中,AD2+BD2=AB2
∴AD2+BD2=102
∴AD=BD==5(cm).
點(diǎn)評(píng):解答此題要抓住兩個(gè)關(guān)鍵,
(1)判斷出△ABC和△ABD是直角三角形,以便利用勾股定理;
(2)判斷出線段AD=DB,然后將各種線段轉(zhuǎn)化到直角三角形中利用勾股定理解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,⊙O的直徑AB=4,點(diǎn)P是AB延長(zhǎng)線上的一點(diǎn),過P點(diǎn)作⊙O的切線,切點(diǎn)精英家教網(wǎng)為C,連接AC.
(1)若∠CPA=30°,求PC的長(zhǎng);
(2)若點(diǎn)P在AB的延長(zhǎng)線上運(yùn)動(dòng),∠CPA的平分線交AC于點(diǎn)M,你認(rèn)為∠CMP的大小是否發(fā)生變化?若變化,請(qǐng)說明理由;若不變化,求出∠CMP的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,⊙O的直徑AB=2,AD,BC是它的兩條切線,且CD與⊙O相切于點(diǎn)E,交AD,BC于精英家教網(wǎng)點(diǎn)D,C,設(shè)AD=x,BC=y.
(1)求證:AD+BC=CD;
(2)求y關(guān)于x的函數(shù)關(guān)系,并畫去它的圖象;
(3)若x,y是方程2t2-5t+m=0的兩根,求x,y的值;
(4)求四邊形的ABCD的面積S,(用字母表示)并證明S≥2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,⊙O的直徑AB垂直于弦CD,AB、CD相交于點(diǎn)E,∠COD=100°,求∠COE,∠D的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,⊙O的直徑的長(zhǎng)是關(guān)于x的二次方程x2+2(k-2)x+k=0(k是整數(shù))的最大整數(shù)根. P是⊙O外一點(diǎn),過點(diǎn)P作⊙O的切線PA和割線PBC,其中A為切點(diǎn),點(diǎn)B,C是直線PBC與⊙O的交點(diǎn).若PA,PB,PC的長(zhǎng)都是正整數(shù),且PB的長(zhǎng)不是合數(shù),求PA2+PB2+PC2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,⊙O的直徑AB和弦CD交于E,已知AE=6cm,EB=2cm,∠CEA=30°,求圓心O到CD的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案