【題目】完成下面的證明.
已知,如圖所示,BCE,AFE是直線,
AB∥CD,∠1=∠2,∠3=∠4.
求證:AD∥BE
證明:∵ AB∥CD (已知)
∴ ∠4 =∠ ( )
∵ ∠3 =∠4 (已知)
∴ ∠3 =∠ ( )
∵∠1 =∠2 (已知)
∴∠1+∠CAF =∠2+ ∠CAF ( )
即:∠ =∠ .
∴ ∠3 =∠ ( )
∴ AD∥BE ( )
【答案】詳見解析.
【解析】
試題因為AB∥CD,由此得到∠4=∠BAF,它們是同位角,由此得到根據(jù)兩直線平行,同位角相等;
由∠4=∠BAF,∠3=∠4得到∠3=∠BAF的根據(jù)是等量代換;
由∠BAF=∠CAD和已知結(jié)論得到∠3=∠CAD的根據(jù)是等量代換;
由∠3=∠CAD得到AD∥BE的根據(jù)是內(nèi)錯角相等,兩直線平行.
∵AB∥CD(已知),
∴∠4=∠BAF(兩直線平行,同位角相等).
∵∠3=∠4(已知),
∴∠3=∠BAF(等量代換).
∵∠1=∠2(已知),
∴∠1+∠CAF=∠2+∠CAF(等式的性質(zhì)),
即∠BAF=∠CAD.
∴∠3=∠CAD(等量代換).
∴AD∥BE(內(nèi)錯角相等,兩直線平行).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】巴蜀中學(xué)2017春季運動會的開幕式精彩紛呈,主要分為以下幾個類型:A文藝范、B動漫潮、C學(xué)院派、D民族風(fēng),為了解未能參加運動會的初三學(xué)子對開幕式類型的喜好情況,學(xué)生處在初三年級隨機抽取了一部分學(xué)生進行調(diào)查,并將他們喜歡的種類繪制成如下統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答以下問題:
(1)請補全折線統(tǒng)計圖,并求出“動漫潮”所在扇形的圓心角度數(shù).
(2)據(jù)統(tǒng)計,在被調(diào)查的學(xué)生中,喜歡“文藝范”類型的僅有2名住讀生,其余均為走讀生,初二年級欲從喜歡“文藝范”的這幾名同學(xué)中隨機抽取兩名同學(xué)去觀摩“文明禮儀大賽”視頻,用列表法或樹狀圖的方法求出所選的兩名同學(xué)都是走讀生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知線段,點C為線段AB上的一動點,點D、E分別是AC和BC中點.
若,求DE的長;
試說明無論AC取何值不超過,DE的長不變;
如圖2,已知,過角的內(nèi)部一點C畫射線OC,若OD、OE分別平分和,試說明的度數(shù)與射線OC的位置無關(guān).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,直線EF與AB、CD分別相交于E、F兩點,EP平分∠AEF,過點F作FP⊥EP,若∠PEF=30°,則∠PFC等于( )
A.30°
B.45°
C.60°
D.120°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P是正方形ABCD內(nèi)一點,點P到點A,B和C的距離分別為,1,2,△ABP繞點B旋轉(zhuǎn)至△CBP′,連結(jié)PP′,并延長BP與DC相交于點Q,則∠CPQ的大小為______ (度)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“戒煙一小時,健康億人行”,今年國際無煙日,某市團委組織人員就公眾對在超市吸煙的態(tài)度進行了隨機抽樣調(diào)查,主要由四種態(tài)度:A.顧客出面制止;B.勸說進吸煙室;C.超市老板出面制止;D.無所謂.他將調(diào)查結(jié)果繪制了兩幅不完整的統(tǒng)計圖.請你根據(jù)圖中的信息回答下列問題:
態(tài)度 | A.顧客出面制止 | B.勸說進吸煙室 | C.超市老板出面制止 | D.無所謂 |
頻數(shù)(人數(shù)) | 90 | 30 | 10 |
請你根據(jù)統(tǒng)計圖、表提供的信息解答下列問題:
(1)這次抽樣的公眾有人.
(2)請將統(tǒng)計表和扇形統(tǒng)計圖補充完整;
(3)在統(tǒng)計圖中“B”部分所對應(yīng)的圓心角是度.
(4)若該市有120萬人,估計該市態(tài)度為“A.顧客出面制止”的有萬人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線,直線交于點,交于點,是線段上的一個動點,
(1)若點在線段(、兩點除外)上運動,問,,之間的關(guān)系是什么?這種關(guān)系是否變化?
(2)若點在線段之外時,,,之間的關(guān)系怎樣?說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中有三點、、,請回答如下問題:
(1)在坐標(biāo)系內(nèi)描出點的位置:
(2)求出以三點為頂點的三角形的面積;
(3)在軸上是否存在點,使以三點為頂點的三角形的面積為10,若存在,請直接寫出點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=x2+bx+c與y=x的圖象如圖所示,則下列結(jié)論中正確的是( )
A.當(dāng)1<x<3時,x2+(b﹣1)x+c<0
B.b+c=1
C.3b+c=6
D.b2﹣4c>0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com