【題目】如圖,PQ為圓O的直徑,點(diǎn)B在線(xiàn)段PQ的延長(zhǎng)線(xiàn)上,OQ=QB=1,動(dòng)點(diǎn)A在圓O的上半圓運(yùn)動(dòng)(含P、Q兩點(diǎn)),

(1)當(dāng)線(xiàn)段AB所在的直線(xiàn)與圓O相切時(shí),求弧AQ的長(zhǎng)(圖1);

(2)若∠AOB=120°,求AB的長(zhǎng)(圖2);

(3)如果線(xiàn)段AB與圓O有兩個(gè)公共點(diǎn)A、M,當(dāng)AO⊥PM于點(diǎn)N時(shí),求 的值(圖3).

【答案】(1); (2); (3)

【解析】(1)根據(jù)直角三角形的性質(zhì)求出∠B的度數(shù),得到∠AOB的度數(shù),再根據(jù)弧長(zhǎng)的計(jì)算公式進(jìn)行求解即可;

(2)連接AP,過(guò)點(diǎn)A作AM⊥BP于M,根據(jù)特殊角的三角函數(shù)值和已知條件求出AM,再根據(jù)BM=OM+OB,求出BM,最后根據(jù)勾股定理求出AB;

(3)連接MQ,根據(jù)PQ是圓O的直徑和AO⊥PM,得出ON∥MQ,求出ON=AO,設(shè)ON=x,則AO=4x,根據(jù)OA的值求出x的值,再根據(jù)PN=,求出PN,最后根據(jù)特殊角的三角函數(shù)值即可得出答案.

解:(1)∵直線(xiàn)AB與圓O相切,

∴∠OAB=90°,

∵OQ=QB=1,

∴OA=1,OB=2,

∴OA=OB,

∴∠B=30°,

∴∠AOB=60°,

∴AQ==;

(2)如圖1,

連接AP,過(guò)點(diǎn)A作AM⊥BP于M,

∵∠AOB=120°,∴∠AOP=60°,

∵OM=,∴BM=OM+OB=+2=,

∴AB===;

(3)如圖2,連接MQ,

∵PQ為圓O的直徑,∴∠PMQ=90°,

∵ON⊥PM,∴AO∥MQ,

∵PO=OQ,

∴ON=MQ,

∵OQ=BQ,

∴MQ=AO,

∴ON=AO,

設(shè)ON=x,則AO=4x,

∵OA=1,

∴4x=1,

∴x=,

∴ON=

∴PN===,

==.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠生產(chǎn)一種合金薄板(其厚度忽略不計(jì))這些薄板的形狀均為正方形,邊長(zhǎng)(單位:cm)在550之間,每張薄板的成本價(jià)(單位:元)與它的面積(單位:cm2)成正比例,每張薄板的出廠價(jià)(單位:元)由基礎(chǔ)價(jià)和浮動(dòng)價(jià)兩部分組成,(即出廠價(jià)=基礎(chǔ)價(jià)+浮動(dòng)價(jià)其中基礎(chǔ)價(jià)與薄板的大小無(wú)關(guān),是固定不變的,浮動(dòng)價(jià)與薄板的邊長(zhǎng)x成正比例,在營(yíng)銷(xiāo)過(guò)程中得到了表格中的數(shù)據(jù),已知出廠一張邊長(zhǎng)為40cm的薄板,獲得利潤(rùn)是26.(利潤(rùn)=出廠價(jià)-成本價(jià))

薄板的邊長(zhǎng)(cm

20

30

出廠價(jià)(元/張)

50

70

(1)求一張薄板的出廠價(jià)y與邊長(zhǎng)x之間滿(mǎn)足的函數(shù)關(guān)系式;

(2)求一張薄板的利潤(rùn)p與邊長(zhǎng)x之間的函數(shù)關(guān)系式;

(3)若一張薄板的利潤(rùn)是34元,且成本最低,此時(shí)薄板的邊長(zhǎng)為多少?當(dāng)薄板的邊長(zhǎng)為多少時(shí),所獲利潤(rùn)最大,求出這個(gè)最大值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店購(gòu)進(jìn)一批單價(jià)為20元的日用品,如果以單價(jià)30元銷(xiāo)售,那么半個(gè)月內(nèi)可以售出400件.根據(jù)銷(xiāo)售經(jīng)驗(yàn),提高單價(jià)會(huì)導(dǎo)致銷(xiāo)售量的減少,即銷(xiāo)售單價(jià)每提高1元,銷(xiāo)售量相應(yīng)減少20件.如果售價(jià)為x元,總利潤(rùn)為y元。

(1)寫(xiě)出y與x的函數(shù)關(guān)系式

(2)當(dāng)售價(jià)x為多少元時(shí),總利潤(rùn)為y最大,最大值是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)Pm,n)在第三象限,則點(diǎn)Q(-m,│n│)在( ).

A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若點(diǎn)Ma+2,a-3)在y軸上,則點(diǎn)M的坐標(biāo)為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程x2-(2k+1)x+4(k-0.5)=0

(1)判斷方程根的情況;

(2)k為何值時(shí),方程有兩個(gè)相等的實(shí)數(shù)根,并求出此時(shí)方程的根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在全運(yùn)會(huì)射擊比賽的選拔賽中,運(yùn)動(dòng)員甲10次射擊成績(jī)的統(tǒng)計(jì)表(表1)和扇形統(tǒng)計(jì)圖如下:

命中環(huán)數(shù)

10

9

8

7

命中次數(shù)

3

2

(1)根據(jù)統(tǒng)計(jì)表(圖)中提供的信息,補(bǔ)全統(tǒng)計(jì)表扇形統(tǒng)計(jì)圖;

(2)已知乙運(yùn)動(dòng)員10次射擊的平均成績(jī)?yōu)?環(huán),方差為1.2,如果只能選一人參加比賽,你認(rèn)為應(yīng)該派誰(shuí)去?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB=AD,BC=DC,點(diǎn)E是AC上的一點(diǎn).求證:

(1)BE=DE;
(2)∠ABE=∠ADE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC

(1)①用直尺和圓規(guī)作出∠ACB的角平分線(xiàn)CD;(不寫(xiě)作法,但保留作圖痕跡)
②過(guò)點(diǎn)D畫(huà)出△ADC的高DE和△DCB的高DF;
(2)量出DE,DF的長(zhǎng)度,你有怎樣的發(fā)現(xiàn)?并把你的發(fā)現(xiàn)用文字語(yǔ)言表達(dá)出來(lái).

查看答案和解析>>

同步練習(xí)冊(cè)答案