如圖,已知點(diǎn)P為正方形ABCD內(nèi)一點(diǎn),且PA=PB=5cm,點(diǎn)P到邊CD的距離也為5cm,則正方形ABCD的面積為    cm2
【答案】分析:過(guò)P作EF∥AD,則PE⊥CD,PF⊥AB,設(shè)PF=x,則AB=5+x,AF=FB=,解直角△APF即可求得x的值.即可求得AB的長(zhǎng),根據(jù)AB的長(zhǎng)即可求正方形ABCD的面積.
解答:解:過(guò)P作EF∥AD,則PE⊥CD,PF⊥AB,
設(shè)PF=x,則AB=5+x,AF=FB=,
在直角△APF中,AP為斜邊,AP=5cm,PF=x,F(xiàn)A=,
且AF2+PF2=AP2
解得x=3cm,
所以AB=3cm+5cm=8cm,
故正方形面積為S=AB•AB=64cm2,
故答案為 64.
點(diǎn)評(píng):本題考查了勾股定理在直角三角形中的運(yùn)用,考查了正方形各邊長(zhǎng)相等的性質(zhì),考查了正方形面積的計(jì)算,本題中正確求x的值是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知點(diǎn)A從(1,0)出發(fā),以1個(gè)單位長(zhǎng)度/秒的速度沿x軸向正方向運(yùn)動(dòng),以O(shè),精英家教網(wǎng)A為頂點(diǎn)作菱形OABC,使點(diǎn)B,C在第一象限內(nèi),且∠AOC=60°;以P(0,3)為圓心,PC為半徑作圓.設(shè)點(diǎn)A運(yùn)動(dòng)了t秒,求:
(1)點(diǎn)C的坐標(biāo)(用含t的代數(shù)式表示);
(2)當(dāng)點(diǎn)A在運(yùn)動(dòng)過(guò)程中,所有使⊙P與菱形OABC的邊所在直線相切的t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知點(diǎn)A從(1,0)出發(fā),以1個(gè)單位長(zhǎng)度/秒的速度沿x軸向正方向運(yùn)動(dòng),以O(shè)、A為頂點(diǎn)在x軸的上方作菱形OABC,且∠AOC=60°;同時(shí)點(diǎn)G從點(diǎn)D(8,0)出發(fā),以2個(gè)單位長(zhǎng)度/秒的速度沿x軸向負(fù)方向運(yùn)動(dòng),以D、G為頂點(diǎn)在x軸的上方作正方形DEFG.設(shè)點(diǎn)A運(yùn)動(dòng)了t秒.求:
(1)點(diǎn)B的坐標(biāo)(用含t的代數(shù)式表示)
(2)當(dāng)點(diǎn)A在運(yùn)動(dòng)的過(guò)程中,當(dāng)t為何值時(shí),點(diǎn)O、B、E在同一直線上;
(3)當(dāng)點(diǎn)A在運(yùn)動(dòng)的過(guò)程中,是否存在t,使得以點(diǎn)C、G、D為頂點(diǎn)的三角形為等腰三角形?若存在精英家教網(wǎng),求出t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知點(diǎn)A(-3,5)在拋物線y=
12
x2+c的圖象上,點(diǎn)P從拋物線的頂點(diǎn)Q出發(fā),沿y軸以每秒1個(gè)單位的速度向正方向運(yùn)動(dòng),連接AP并延長(zhǎng),交拋物線于點(diǎn)B,分別過(guò)點(diǎn)A、B作x軸的垂線,垂足為C、D,連接AQ、BQ.
(1)求拋物線的解析式;
(2)當(dāng)A、Q、B三點(diǎn)構(gòu)成以AQ為直角邊的直角三角形時(shí),求點(diǎn)P離開(kāi)點(diǎn)Q多少時(shí)間?
(3)試探索當(dāng)AP、AC、BP、BD與一個(gè)平行四邊形的四條邊對(duì)應(yīng)相等(即這四條線段能構(gòu)成平行四邊形)時(shí),點(diǎn)P離開(kāi)點(diǎn)Q的時(shí)刻.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知點(diǎn)A(?3,5)在拋物線y=x2+c的圖象上,點(diǎn)P從拋物線的頂點(diǎn)Q出發(fā),沿y軸以每秒1個(gè)單位的速度向正方向運(yùn)動(dòng),連結(jié)AP并延長(zhǎng),交拋物線于點(diǎn)B,分別過(guò)點(diǎn)A、B作x軸的垂線,垂足為C、D,連結(jié)AQ、BQ.
【小題1】求拋物線的解析式;
【小題2】當(dāng)A、Q、B三點(diǎn)構(gòu)成以AQ為直角邊的直角三角形時(shí),求點(diǎn)P離開(kāi)點(diǎn)Q多少時(shí)間?
【小題3】試探索當(dāng)AP、AC、BP、BD與一個(gè)平行四邊形的四條邊對(duì)應(yīng)相等(即這四條線段能構(gòu)成平行四邊形)時(shí),點(diǎn)P離開(kāi)點(diǎn)Q的時(shí)刻.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省吳江市九年級(jí)5月教學(xué)調(diào)研測(cè)試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知點(diǎn)A(−3,5)在拋物線y=x2+c的圖象上,點(diǎn)P從拋物線的頂點(diǎn)Q出發(fā),沿y軸以

每秒1個(gè)單位的速度向正方向運(yùn)動(dòng),連結(jié)AP并延長(zhǎng),交拋物線于點(diǎn)B,分別過(guò)點(diǎn)A、B作x軸的垂線,垂

足為C、D,連結(jié)AQ、BQ.

(1)求拋物線的解析式;

(2)當(dāng)A、Q、B三點(diǎn)構(gòu)成以AQ為直角邊的直角三角形時(shí),求點(diǎn)P離開(kāi)點(diǎn)Q多少時(shí)間?

(3)試探索當(dāng)AP、AC、BP、BD與一個(gè)平行四邊形的四條邊對(duì)應(yīng)相等(即這四條線段能構(gòu)成平行四邊形)時(shí),點(diǎn)P離開(kāi)點(diǎn)Q的時(shí)刻.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案