【題目】在如圖的網(wǎng)格中,小正方形的邊長(zhǎng)都是1,利用所學(xué)知識(shí)兩種解法求四邊形ABCD的面積,寫出完整求解過(guò)程.

【答案】方法一:見(jiàn)解析;方法二:見(jiàn)解析.

【解析】

方法一,把不規(guī)則的四邊形ABCD補(bǔ)成規(guī)則圖形,常規(guī)做法是過(guò)A、B、C構(gòu)造以網(wǎng)格線為邊長(zhǎng)的矩形,用矩形面積減去兩個(gè)小直角三角形和一個(gè)矩形的面積和即得到四邊形ABCD的面積.

方法二,通過(guò)連接AC把不規(guī)則的四邊形ABCD補(bǔ)成△ABC,則四邊形面積為△ABC面積減去直角△ACD面積.計(jì)算得到AB265,BC252,AC213,滿足勾股定理逆定理,即△ABC為直角三角形且∠ACB90°,易求其面積.

方法一:如圖,構(gòu)造矩形GEFB,

SGABGAGB×1×84,

S矩形AECDAEEC3×26,

SBCFCFBF×6×412

S矩形GEFBGEEF4×832,

S四邊形ABCDS矩形GEFBSGABS矩形AECDSBCF 32461210

方法二:連接AC,得RtADC,

由圖形及勾股定理得:AC232+2213,BC262+4252AB282+1265,

AC2+BC2AB2,

∴△ACB為直角三角形且∠ACB90°,

SACBACBC,

SADCADCD×2×33

S四邊形ABCDSACBSADC13310.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若規(guī)定這樣一種運(yùn)算:ab=(|ab|+a+b),例如:23=(|23|+2+3)=3

1)求34和(-3-2)的值;

2)將1,2,3,…,5050個(gè)自然數(shù),任意分為25,每組兩個(gè)數(shù),現(xiàn)將每組的兩個(gè)數(shù)中任一數(shù)值記作a,另一個(gè)記作b,代入代數(shù)式(|ab|+a+b)中進(jìn)行計(jì)算,求出其結(jié)果,25組數(shù)代入后可求得25個(gè)值,求這25個(gè)值的和的最大值是_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形ABCD的邊ABx軸上,點(diǎn)C的坐標(biāo)為(﹣5,4),點(diǎn)Dy軸的正半軸上,經(jīng)過(guò)點(diǎn)A的直線yx1y軸交于點(diǎn)E,將直線AE沿y軸向上平移nn0)個(gè)單位長(zhǎng)度后,得到直線l,直線l經(jīng)過(guò)點(diǎn)C時(shí)停止平移.

1)點(diǎn)A的坐標(biāo)為   ,點(diǎn)B的坐標(biāo)為   

2)若直線ly軸于點(diǎn)F,連接CF,設(shè)△CDF的面積為S(這里規(guī)定:線段是面積為0的三角形),求Sn之間的函數(shù)關(guān)系式,并寫出n的取值范圍;

3)易知AEAD于點(diǎn)A,若直線l交折線ADDC于點(diǎn)P,當(dāng)△AEP為直角三角形時(shí),請(qǐng)直接寫出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1、2,已知四邊形ABCD為正方形,在射線AC上有一動(dòng)點(diǎn)P,作PEAD(或延長(zhǎng)線)于E,作PFDC(或延長(zhǎng)線)于F,作射線BP交EF于G.

(1)在圖1中,設(shè)正方形ABCD的邊長(zhǎng)為2,四邊形ABFE的面積為y,AP=x,求y關(guān)于x的函數(shù)表達(dá)式;

(2)結(jié)論:GBEF對(duì)圖1,圖2都是成立的,請(qǐng)任選一圖形給出證明;

(3)請(qǐng)根據(jù)圖2證明:FGC∽△PFB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們給出如下定義:若一個(gè)四邊形的兩條對(duì)角線相等,則稱這個(gè)四邊形為等對(duì)角線四邊形.請(qǐng)解答下列問(wèn)題:

1)寫出你所學(xué)過(guò)的特殊四邊形中是等對(duì)角線四邊形的兩種圖形的名稱;

2)探究:當(dāng)?shù)葘?duì)角線四邊形中兩條對(duì)角線所夾銳角為60°時(shí),這對(duì)60°角所對(duì)的兩邊之和與其中一條對(duì)角線的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,一方隊(duì)正沿箭頭所指的方向前進(jìn)

1A的位置為第三列第四行,表示為(34),那么B的位置是____________

A B C D

2B左側(cè)第二個(gè)人的位置是____________

A B C D

3)如果隊(duì)伍向東前進(jìn),那么A北側(cè)第二個(gè)人的位置是____________

A B C D

4表示的位置是____________

AA BB CC DD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,數(shù)軸上有A、B、C三點(diǎn),且AB=3BC,若B為原點(diǎn),A點(diǎn)表示數(shù)為6.

(1)求C點(diǎn)表示的數(shù);

(2)若數(shù)軸上有一動(dòng)點(diǎn)P,以每秒1個(gè)單位的速度從點(diǎn)C向點(diǎn)A勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,請(qǐng)用含t的代數(shù)式表示PB的長(zhǎng);

(3)在(2)的條件下,點(diǎn)P運(yùn)動(dòng)的同時(shí)有一動(dòng)點(diǎn)Q從點(diǎn)A以每秒2個(gè)單位的速度向點(diǎn)C勻速運(yùn)動(dòng),當(dāng)P、Q兩點(diǎn)相距2個(gè)單位長(zhǎng)度時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把邊長(zhǎng)為2的等邊三角形△ABC沿直線BC向右平移,使點(diǎn)B與點(diǎn)C重合,得到△DCE,連接BD,交AC于點(diǎn)F

1)證明:AC⊥BD

2)求線段BD的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察如圖圖形,把一個(gè)三角形分別連接其三邊中點(diǎn),構(gòu)成4個(gè)小三角形,挖去中間的一個(gè)小三角形(如圖1),對(duì)剩下的三個(gè)小三角形再分別重復(fù)以上做法,……,據(jù)此解答下面的問(wèn)題

(1)填寫下表:

圖形

挖去三角形的個(gè)數(shù)

圖形1

1

圖形2

1+3

圖形3

1+3+9

圖形4

   

(2)根據(jù)這個(gè)規(guī)律,求圖n中挖去三角形的個(gè)數(shù)wn;(用含n的代數(shù)式表示)

(3)若圖n+1中挖去三角形的個(gè)數(shù)為wn+1,求wn+1﹣Wn

查看答案和解析>>

同步練習(xí)冊(cè)答案